
RoboTool: Creative Robot Tool Use with Large Language Models
Mengdi Xu*,+,1, Peide Huang*,1, Wenhao Yu*,2, Shiqi Liu1, Xilun Zhang1, Yaru Niu1, Tingnan Zhang2, Fei Xia2, Jie Tan2, Ding Zhao1.

* Indicates equal contribution. + Work partially done at Google DeepMind. 1 Carnegie Mellon University. 2 Google DeepMind. Contact: mengdixu@andrew.cmu.edu

Motivation

Creative tool use provides a solution to long-horizon task and motion planning problems with
environment- and embodiment-related constraints.

Tool use is a hallmark of intelligence. How to enable robots use tools creatively?

Main Results:
- RoboTool can generate
creative tool use behaviors
and achieve higher
success rates than
baselines.

Creative Tool-Use Tasks

We propose RoboTool built on
large language models (LLMs).

RoboTool has four components:

Analyzer for extracting physical
concepts affecting task feasibility;

Planner for generating high level
plan calling parameterized skills;

Calculator for calculating the
parameters for each skill;

Coder to get executable codes.

RoboTool Framework Experiments in Simulation and Real-world

We design six creative tool
use tasks for two robots.

• Tool selection.
• Sequential tool use.
• Tool manufacturing.

Analyzer

You are a robot arm with workspace x-range 0-0.5m, y-range ….
There is a milk carton, a hammer and a box on the table.
The milk carton’s position is at [0.8, 0.0, 0.1] with size ….
Give me a plan to grasp the milk carton.

Use the hammer as a tool.
Step 1: Move to the hammer and grasp the hammer.

The 3D target pos is …
Step 2: Move the hammer to the milk to ensure in contact.

The 3D target pos is …
Step 3: Drag the the milk carton into the workspace.

The 3D target pos is …
Step 4: Grasp the milk carton.

The key feature is the x
position of the milk carton 0.8
which is out of the robot
workspace along the x-axis.

User: Constraints, Scene Description, Task

Planner Calculator

Coder

import numpy as np

Move to hammer and grasp the hammer
hammer_position, _ =
get_position('hammer')
target_position = hammer_position +
np.array([0.0, 0.0, 0.05/2 - 0.02])
move_to_position(target_position)
close_gripper()

Move the hammer to the milk
milk_position, _ = get_position('milk
carton')
milk_size = get_size('milk carton')
target_position = [milk_position[0],
milk_position[1], milk_position[2] -
milk_size[2]/1.3]
move_to_position(target_position)

Move the milk into the workspace
target_position = [0.175, 0.0,
milk_position[2]]
move_to_position(target_position)
open_gripper()

Move to the milk and grasp the milk
. . .

Robot Execution

Can robots finish similar tasks?

Takeaway 1: RoboTool can reason
with physical concepts and thus solve
physical puzzles, with the help of
pretrained LLMs.

Takeaway 2: RoboTool can creatively
use tools according to their geometric
and other physical properties.

Takeaway 3: RoboTool can detect
activated physical constraints and
ground them on the plan, resulting in
using tools only when necessary.

<start of analysis>
The key feature that affects the feasibility
of the plan is the gap between sofa_1 and
sofa_2...

To calculate the gap, we need to consider the
x-axis positions of the two sofas and their
sizes. The center of sofa_1 is at x=0.0 and
its size along the x-axis is 1.5m, so its
edge is at x=0.0+1.5/2=0.75m...

Therefore, the gap between the two sofas is
1.15m - 0.75m = 0.4m, which is larger than
the maximum gap the robot can walk across
(0.1m).
<end of analysis>

<start of description>
The key feature is the gap between sofa_1 and
sofa_2 which is 0.4m, since the robot can
only walk across a gap smaller than 0.1m.
According to the initial configuration, the
constraint is violated initially.
<end of description>

<start of description>
[SOFA_1]: ...
[SOFA_2]: ...
[SURFBOARD]: The surfboard is light
enough for the robot to push and can be
used as a bridge to cross the gap between
the sofas.
[STRIP_OF_CLOTH]: The strip of cloth is
on sofa_1 but it is too thin and small to
be useful in this task.
[Key Feature and constraints]: The key
feature is the gap between sofa_1 and
sofa_2...
[Abstract Plan]: The robot should first
push the surfboard to the edge of
sofa_1...
<end of description>

<start of plan>
- Use the 'get_position' skill to...
- Use the 'push_to_position' skill to
push the surfboard...
...
<end of plan>

Example of Analyzer output. Example of Planner output.

Cube-Lifting Button-PressingSofa-Traversing Milk-Reaching Sofa-Climbing Can-Grasping

⬇ Demos⬇

Success rates of RoboTool and baselines

Key concept accuracy.

Error breakdown. Discriminative tool use behaviors.

Error Breakdown:

- Analyer reduces tool
use error and
Calculator reduces
numerical error.
- The performance
drop in the real-world
is due to perception
and execution errors.

Key concepts and discriminative tool-use
behavior:

- Analyer extracts the key concept, its numerical
values and the activated constraints with high
accuracy.

- Key concepts help generate discriminative tool
use behaviors – using tools only when necessary.

Scan for full paper!

Project page.

