RoboTool: Creative Robot Tool Use with Large Language Models

Mengdi Xu^{*,+,1}, Peide Huang^{*,1}, Wenhao Yu^{*,2}, Shiqi Liu¹, Xilun Zhang¹, Yaru Niu¹, Tingnan Zhang², Fei Xia², Jie Tan², Ding Zhao¹. * Indicates equal contribution. + Work partially done at Google DeepMind. ¹ Carnegie Mellon University. ² Google DeepMind. Contact: mengdixu@andrew.cmu.edu

Motivation

Tool use is a hallmark of intelligence. How to enable robots use tools creatively?

Apes with Tools Source: National Geographic

Creative tool use provides a solution to long-horizon task and motion planning problems with environment- and embodiment-related constraints.

RoboTool Framework

We propose RoboTool built on User: Constraints, Scene Description, Task large language models (LLMs).

RoboTool has four components:

Analyzer for extracting physical concepts affecting task feasibility;

Planner for generating high level plan calling parameterized skills;

Calculator for calculating the parameters for each skill;

Coder to get executable codes.

<end of description> Example of Analyzer output.

You are a robot arm with workspace x-range 0-0.5m, y-range There is a milk carton, a hammer and a box on the table. The milk carton's position is at [0.8, 0.0, 0.1] with size Give me a plan to grasp the milk carton.

The key feature is the x which is out of the robot workspace along the x-axis.

se the hammer as a tool. Move to the hammer and grasp the hammer. The 3 s is ... : Move the hammer to the milk to ensure in contact. The 3 D target pos is ... 3: Drag the the milk carton into the workspace. The 3D target pos is ... • 4: Grasp the milk carton.

<start of description> [SOFA_1]: ... [SOFA_2]: ... [SURFBOARD]: The surfboard is light enough for the robot to push and can be used as a bridge to cross the gap between the sofas. [STRIP_OF_CLOTH]: The strip of cloth is on sofa_1 but it is too thin and small to be useful in this task. [Key Feature and constraints]: The key feature is the gap between sofa_1 and sofa_2... [Abstract Plan]: The robot should first push the surfboard to the edge of sofa_1... <end of description> <start of plan> - Use the 'get_position' skill to...

 Use the 'push_to_position' skill to push the surfboard...

<end of plan>

. . .

Example of Planner output.

Coder

import numpy as np # Move to hammer and grasp the hammer hammer_position, _ = et_position('hammer') target_position = hammer_position + np.array([0.0, 0.0, 0.05/2 - 0.02])move_to_position(target_position) close_gripper()

Move the hammer to the milk milk_position, _ = get_position('milk carton') milk_size = get_size('milk carton') target_position = [milk_position[0], milk_position[1], milk_position[2]

milk_size[2]/1.3] move_to_position(target_position)

Move the milk into the workspace target_position = [0.175, 0.0, milk_position[2]] move_to_position(target_position) open_gripper()

Move to the milk and grasp the milk • • •

👜 Robot Execution

Takeaway 1: RoboTool can reason with physical concepts and thus solve physical puzzles, with the help of pretrained LLMs.

Takeaway 2: RoboTool can creatively use tools according to their geometric and other physical properties.

Takeaway 3: RoboTool can detect activated physical constraints and ground them on the plan, resulting in using tools only when necessary.

Robo Robo Plann Code

Robo

Milk-Can-Butto Sofa-Sofa-Cube

Creative Tool-Use Tasks

Cube-Lifting

Experiments in Simulation and Real-world

	Milk- Reaching	Can- Grasping	Button- Pressing	Sofa- Traversing	Sofa- Climbing	Cube- Lifting	Average
Tool	0.9	0.7	0.8	1.0	1.0	0.8	0.87
Tool w/o Analyzer	0.0	0.4	0.2	1.0	0.7	0.2	0.42
Tool w/o Calculator	0.0	0.1	0.8	0.3	0.0	0.3	0.25
ner-Coder	0.0	0.2	0.5	0.1	0.0	0.4	0.20
r	0.0	0.0	0.0	0.0	0.0	0.4	0.07
Tool (Real World)	0.7	0.7	0.8	0.7	0.8	0.9	0.77

Success rates of RoboTool and baselines

Numerical Error Success Tool Use Error Logical Error

Error Breakdown:

- Analyer reduces tool use error and Calculator reduces numerical error.
- The performance drop in the real-world is due to perception and execution errors.

	Key Concept and Violated Constraints	Accuracy
-Reaching	Milk's position is out of robot workspace.	1.0
Grasping	Can's position is out of robot workspace.	1.0
on-Pressing	Button's position is out of robot workspace.	0.9
Traversing	Gap's width is out of robot's walking capability.	1.0
Climbing	Sofa's height is out of robot's climbing capability.	0.8
e-Lifting	Cube's weight is out of robot's pushing capability.	1.0

Google DeepMind

Scan for full paper!

We design six creative tool use tasks for two robots.

- Tool selection.
- Sequential tool use.
- Tool manufacturing.

🛃 Demos 🛃

Project page.

Main Results:

- RoboTool can generate creative tool use behaviors and achieve higher success rates than baselines.

Probability Discriminative tool use behaviors.

Key concepts and discriminative tool-use behavior:

- Analyer extracts the key concept, its numerical values and the activated constraints with high accuracy.

- Key concepts help generate discriminative tool use behaviors – using tools only when necessary.