Learning Interpretable, High-Performing Policies for Continuous Control

Robotics & Rohan Paleja*, Yaru Niu*, Andrew Silva, Chace Ritchie, Sugju Choi, and Matthew Gombolay **Georgia** Intelligent Machines rohan.paleja@gatech.edu, yarun@andrew.cmu.edu, matthew.gombolay@gatech.edu Tech ROBOTICS LAB Paper Code pretable Continuous Control Trees (ICCTs) Introduction Interpretability-Performance Tradeoff **Gradient-based approaches in reinforcement learning** ICCT $ec{x} = [x^1, x^2, \dots, x^m]$ Learned Tree (RL) have achieved tremendous success in learning $w_1^{k_1}x^{k_1} > b_1$ policies for continuous control problems. While the tradeoff of our ICCTs, assessing the change in performance as we performance of these approaches enables real-world $-2.4x^4 - 0.3$ vary the number of leaves in our tree and varying the number of adoption, these policies lack interpretability, limiting $\sigma[\alpha(\vec{w}_6^T \vec{x} - b_6)] \qquad \sigma[\alpha(\vec{w}_7^T \vec{x} - b_7)]$ active features in our leaf controllers. deployability in the safety-critical and legally-regulated domains like autonomous driving. Pareto-Efficiency Curve depiction of our ICCT in its form during training (left) alongside its conversion Pareto-Efficiency Curve ng Function Human Operato to an interpretable form (right). 250 250 **E** 225 Successful Successfu Landing Landing

Figure 1. An autonomous vehicle control pipeline. The use of black-box models as a decision-making function does not permit inspection or verification by human operators. It is instead better to utilize white-box approaches that permit insight into a decision-making model.

- Interpretable policies can support situational awareness¹, build trust², and ensure safety³
- In safety-critical and legally-regulated domains, insight into a machine's decision-making process is of utmost importance.

* The ability to optimize sparse logical models, such as decision trees, is one of 10 grand challenges in interpretable machine learning⁴.

Preliminaries

DDTs^{5,6,7} models have been trained for discrete action spaces in the past

- Via supervised learning by Suarez and Lutzsko and Paleja et al,
- Via Reinforcement learning by Silva et al

Once DDT parameters have been inferred, prior work, applied a posthoc crispification^{6,7} consisting of several argument max operations to produce an interpretable model.

user demonstrations. NeurIPS 2020

- DDT models in the past have been unable to handle continuous action-spaces.
- Interpretable models generated via post-hoc crispification are not representative of the model learned via Reinforcement Learning

References

[1] Paleja, R.R., Ghuy, M., Arachchige, N.R., Jensen, R., & Gombolay, M.C. The Utility of Explainable AI in Ad Hoc Human-Machine Teaming. NeurIPS 2021 [2] Bhatt, U., Ravikumar, P., & Moura, J.M. Building Human-Machine Trust via Interpretability. AAAI 2019. [3] Vasic, M., Petrović, A., Wang, K., Nikolic, M., Singh, R., & Khurshid, S. MoËT: Interpretable and Verifiable Reinforcement Learning via Mixture of Expert Trees. arXiv, 2019. [4] Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., & Zhong, C. Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. arXiv, 2021. [5] Suárez, A., & Lutsko, J.F. Globally Optimal Fuzzy Decision Trees for Classification and Regression, IEEE TPAMI, 1999 [6] Silva, A., Gombolay, M.C., Killian, T.W., Jimenez, I.D., & Son, S. Optimization Methods for Interpretable Differentiable D Learning. AISTATS 2020 [7] Paleja, R., Silva, A., Chen, L., & Gombolay, M. Interpretable and personalized apprenticeship scheduling: Learning interpretable scheduling policies from heterogeneo

Inter						
Differentiable Crispification Sparse Linear Sub-Controller $\sigma[\alpha(\vec{w}_2^T\vec{x} - \vec{w}_2) + \vec{w}_2 + w$						
Figure 2. A d						
 ICCTS Extend DDTS Sparsity can Utilize a nove representation 						
Deci						
Transle						
cond						
Node_Crisp(
Decisi						
Translate						
repres						

Worst to Best:						
Method						
DT						
DT w\ DAgger						
CDDT-Crisp						
ICCT-static						
ICCT-1-feature						
ICCT-2-feature						
ICCT-3-feature						
ICCT-L1-sparse						
ICCT-complete						
CDDT-controllers Crisp						
MLP-Lower						
MLP-Upper						
MLP-Max						
CDDT						
CDDT-controllers						

s to continuous action-spaces by maintaining sparse linear controllers at the leaves. be tuned to go from a simple tree with scalar leaves to a multivariate linear controller. vel differentiable crispification mechanism directly optimize over a sparse decision-tree on. Due to this, the interpretable model is consistent with the model being trained.

155.0 ± 0.9	-285.5 ± 15.6	-359.0 ± 11.0	123.2 ± 0.03	503.2 ± 24.8	831.1 ± 1.1
256 leaves (766 params)	256 leaves (1022 params)	256 leaves (766 params)	32 leaves (94 params)	256 leaves (1022 params)	256 leaves (766 params)
776.6 ± 54.2	184.7 ± 17.3	395.2 ± 13.8	121.5 ± 0.01	1249.4 ± 3.4	1113.8 ± 9.5
32 leaves (94 params)	32 leaves (126 params)	16 leaves (46 params)	16 leaves (46 params)	31 leaves (122 params)	16 leaves (46 params)
5.0 ± 0.0	-451.6 ± 97.3	-43526.0 ± 15905.0	68.1 ± 18.7	664.5 ± 192.6	322.9 ± 47.1
2 leaves (5 params)	8 leaves (37 params)	16 leaves (61 params)	16 leaves (61 params)	16 leaves (77 params)	16 leaves (61 params)
984.0 ± 10.4	192.4 ± 10.7	374.2±55.8	120.5 ± 0.5	1271.7 ± 4.1	1003.8±27.2
32 leaves (125 params)	32 leaves (157 params)	16 leaves (61 params)	16 leaves (61 params)	16 leaves (77 params)	16 leaves (61 params)
1000.0 ± 0.0	190.1 ± 13.7	437.6 ± 7.0	121.6 ± 0.5	1269.6 ± 10.7	1072.4 ± 37.1
8 leaves (45 params)	8 leaves (69 params)	16 leaves (93 params)	16 leaves (93 params)	16 leaves (141 params)	16 leaves (93 params)
1000.0 ± 0.0	258.4 ± 7.0	458.5 ± 6.3	121.9 ± 0.5	1280.4±7.3	1088.6 ± 21.6
4 leaves (29 params)	8 leaves (101 params)	16 leaves (125 params)	16 leaves (125 params)	16 leaves (205 params)	16 leaves (125 params)
1000.0 ± 0.0	275.8 ± 1.5	448.8 ± 3.0	120.8 ± 0.5	1280.8 ± 7.7	1048.7 ± 46.7
2 leaves (17 params)	8 leaves (133 params)	16 leaves (157 params)	16 leaves (157 params)	16 leaves (269 params)	16 leaves (157 params)
1000.0 ± 0.0	265.2 ± 4.3	465.5 ± 4.3	121.5 ± 0.3	1275.3 ± 6.7	993.2 ± 14.6
4 leaves (29 params)	8 leaves (165 params)	16 leaves (253 params)	16 leaves (765 params)	16 leaves (2189 params)	16 leaves (509 params)
1000.0 ± 0.0	300.5 ± 1.2	476.6 ± 3.1	120.7 ± 0.5	1248.6 ± 3.6	994.1 ± 29.1
2 leaves (13 params)	8 leaves (165 params)	16 leaves (253 params)	16 leaves (765 params)	16 leaves (2189 params)	16 leaves (509 params)
84.0 ± 10.4	-126.6 ± 53.5	-39826.4 ± 21230.0	97.9 ± 12.0	639.62 ± 160.4	245.5 ± 48.5
2 leaves (13 params)	8 leaves (165 params)	16 leaves (253 params)	16 leaves (765 params)	16 leaves (2189 params)	16 leaves (509 params)
1000.0 ± 0.0	231.6 ± 49.8	474.7 ± 5.8	121.8 ± 0.6	646.4 ± 151.2	868.4 ± 100.9
79 params	110 params	127 params	151 params	221 params	103 params
1000.0 ± 0.0	288.7 ± 2.8	467.9 ± 8.5	121.8 ± 0.3	1239.5 ± 4.2	1077.7 ± 31.1
121 params	222 params	407 params	709 params	3266 params	1021 params
1000.0 ± 0.0	298.5 ± 0.7	478.2 ± 6.7	121.7 ± 0.4	1011.9 ± 141.3	1104.3 ± 9.4
67329 params	68610 params	69377 params	77569 params	83458 params	73473 params
1000.0 ± 0.0	226.4 ± 44.5	464.7 ± 5.4	120.9 ± 0.5	1248.0 ± 6.4	1033.2 ± 24.1
2 leaves (8 params)	8 leaves (86 params)	16 leaves (226 params)	16 leaves (706 params)	16 leaves (1036 params)	16 leaves (466 params)
1000.0 ± 0.0	289.0 ± 2.4	469.7 ± 11.1	120.1 ± 0.3	1243.8 ± 3.6	1010.9 ± 25.7
2 leaves (16 params)	8 leaves (214 params)	16 leaves (418 params)	16 leaves (1410 params)	16 leaves (2092 params)	16 leaves (914 params)

Yaru Niu

Rohan

Paleja

Chace Ritchie

Sugju Choi

Matthew Gombolay