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Experiments & ResultsMotivation

Methodology

Robotic Water Scooping
• Scooping is an essential skill for human beings

• Robotic scooping has mainly focused on 
scooping solid materials

• Robotic liquid scooping can be helpful to many 
downstream tasks

Objectives & Challenges
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amount goal: 60%

position goal

amount error: -3.8%

position goal reached

Prior Works on Goal-Conditioned 
Deformable Object Manipulation
• Relatively simple goal state spaces

• Many rely on heuristics, primitives, demonstrations
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Goal-Factorized Reward Formulation

Problem Formulation
A multi-goal reinforcement learning problem
● Goal-conditioned Markov Decision Process (MDP): 
(𝒮, 𝒢,𝒜, 𝑝, 𝑟, 𝜌!, 𝜌")
○ 𝒢: a set of goals
○ 𝜌": goal distribution
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Challenges
• A long-horizon task for RL with 

a multi-modal goal state space
§ Position goal 
§ Water amount goal
• Randomly initialized over a 

large combined space of water 
states and goal states

• Complex dynamics of water

𝝅𝜽
𝒑(𝒐𝒕#𝟏|𝒐𝒕, 𝒂𝒕)

𝒈𝐝𝐞𝐬𝐢𝐫𝐞𝐝 𝒂𝒕

𝒐𝒕#𝟏, 𝒓𝒕
𝒈𝒂𝒄𝒉𝒊𝒆𝒗𝒆𝒅𝒕#𝟏

𝟎% 60%65% 70%75%80%

𝒑
𝟎. 𝟐

Simulation

Real-Robot Scooping

Factorized Goal Sampling Adaptation 

Sparse Rewards
+ Reward shaping is hard for the position-
reaching motions of scooping
+ Encourages exploration

Dense Rewards
+ Reward shaping is simple
+ Dense signals for training

Construct curriculum through interpolations between the 
desired and the initial goal distributions

• Our method can adapt to diverse configurations 
(position goals, amount goals, initial water states), and 
generalize to unseen settings, e.g., initial bucket heights

• Our method achieves 5.46% and 8.71% amount errors on 
bowl and bucket scooping in simulation, respectively, 
outperforming baselines across fours tasks
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