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How to design RL agents that can handle task estimate uncertainties while
balancing robustness and performance?

Challenges:

* Reinforcement Learning (RL) agents may only have incomplete
information about tasks to solve.

 Robust RL that optimizes over worst-possible tasks, which may generate
overly conservative policies.

* Most sequential decision-making formulations assume tasks are i.i.d.
sampled from a single distribution and overlook the existence of task
subpopulations.

Related subcommunities:
 Distributionally robust optimization.
« Partially observable Markov Decision Processes (MDP).

Group Distributionally Robust MDP

Group distributionally robust formulation + Model task subpopulations
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Preliminary: Latent MDP

* An episodic Latent MDP can be specified by a tuple (M, T,S,A,uy). T is the
episodic length. S and A are the joint state and action spaces. M is a set
of joint MDPs. Each MDP is a tuple (T,S,A,P,R,v), where P and R are the
transition probability and reward function. v is the initial distribution.

Our non-robust formulation: Hierarchical Latent MDP

« An episodic Hierarchical Latent MDP can be specified by a tuple (Z,M,
T,5,A,w), where Z is a set of Latent MDPs and w is the categorical
distribution over Latent MDPs.

Our robust formulation: Group Distributionally Robust MDP

* An episodic GDR-MDP is defined by an 8-tuple (C,Z,M,T,S5,A,w,SE). C is
the belief ambiguity set. SE is the belief updating rule.

« GDR-MDP maintains a belief over the mixture z and aims to find a
history-dependent policy that obtains the optimal value as:
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Properties of GDR-MDP

Convergence in infinite-horizon case

« Take the sufficient statistics as (b,s) where b is the belief distribution.
* The Bellman expectation equation, Bellman optimality equation exist.
* The contraction operator exists.

« Convergence exists in infinite-horizon case.

Robustness guarantee: The benefit of (1) distributionally robust
formulation and (2) the hierarchical structure
« We compare the optimal values of different robust formulations:
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We have the following inequalities hold: Vapr(m) > Var(w) > Vr(w) and Vapr(w) > Vpr(m).

« We achieve the comparison by studying the relationships between
ambiguity sets.
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Our Algorithms

Algorithm 1: GDR-MDP Trajectory Rollout

Input: Mixing weights w(z) and u,(m), episode
index n, episode length 7', belief update
function SE, rollout policy 7 (b(2), s),
exploration ¢

Initialize episodic history h = {} ;

Sample mixture z,, ~ w(z) ;

Sample MDP m,, ~ p, (m) ;

Initialize belief by (z) as a uniform distribution ;

fort =0to T do
Sample action a; with the e-greedy method and

rollout in MDP m;
bi+1(2) = SE(bi(2), 5¢41) 3
Append the most recent data pair

d = {(bs, s¢),as, e, (bet1, Se+1) to b ;
Return: history A, episode return

Algorithm 2: Group Distributionally Robust Training
for GDR-DQN and GDR-SAC

Input: Q-net Qo (b(2), s, a), ambiguity set C. 4, ¢,
training episodes IV,
Initialize data buffer D ;

forn =0t N do
Rollout one episode with Algorithm 1 and append

data pairs to D ;
if Update Q-net parameters then
Sample batch data from D ;
for Each d; in the batch do
Get b*% € Cy(2), 4z ¢ With modified
FGSM;
Update Q-net § < 0 — a9VoLg,;
Return: Q-net Qg

Group distributionally robust training methods:
« GDR-DQN, GDR-SAC: Robust value-based
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« GDR-PPO: Robust policy-based
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Scan for full paper!

E n Vi ronmen tS Environment GRF (3 vs. 2) LunarLander HalfCheetah
Parameter 1 Player Type Engine Mode Failure Joint
(Mixture) {CM vs. CB, CB vs. CM} {Normal, Flipped} {0,1,2,3,4,5}
p e Player Capability Level Engine Power Torso Mass
S {0.9 vs. 0.6, 1.0 vs. 0.7} (3.0, 6.0} {0.9, 1.0, 1.1}
# Mixtures 2 2 6
w [0.5, 0.5] [0.5, 0.5] £16
# MDPs 4 4 18
,uz(m) [20 112] [20 112] 0 - 0
2 2 0 0 E5(6)

Training Stability

 GDR achieves a higher average return at convergence compared with
other robust training baselines, including DR and State-R in all envs.

* DR which maintains a belief b(m) over MDPs induces significant training
instability, instead of learning a meaningful conservative policy.

— (G-Exact No-Belief —— GDR (ours) == DR = State-R —— G-Belief

(a) Google Research Football (b) HalfCheetah

LunarLander (c)

01 — === 3000-

0.8 e 2500 1

—1000

—1500

pisode Reward
= — N
u o wu o
o (=) o o
o o o o

Episode Reward

1 —2000

Episode Reward

0.2 | 24P i
“% —2500

0.0 -3000 : ;
0 2 4 6 8 10 12 14 0 20 40
Steps (K)

60 80 100 0 200 400 600 800 1000
Steps (K) Steps (K)

Robustness to belief noise
+ In HalfCheetah and Google Research Football, GDR is consistently

more robust to belief noise than baselines.

No-Belief —— GDR (ours) =——DR - State-R —— G-Belief
(f‘_z Google Reasearch Football (b) (c) HalfCheetah

250 3500
30004 e /\
. % 2500 |
—
0.0

2000 e
T T T T T T T T 1 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Belief Noise Level Belief Noise Level Belief Noise Level

- G-Exact
LunarLander

0.

o
(¢4}

-250

=500 1

o
o

=750 1
1500 -

o
»
!

—1000 1

Episode Reward

Episode Reward
Episode Reward

1000 -

—1250 1

o
N

1500 4 500 —

Ablation Study
 For GDR, gradually increasing the ambiguity set size up to 0.2 helps
Improve the robustness. N .

« With set of size 0.2 and HalfCheetah
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