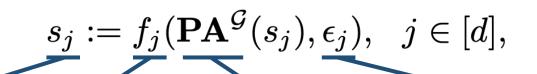

Motivation

Autonomous driving systems...

- Desires safety & generalizability
- Lacks structural awareness of the world

Existing approach along the pipeline...

- End-to-end solutions that are scalable?
- Balance safety and efficiency?



Problem Formulation

Constrained optimization:

 $r = w_1^r r_{forward} + w_2^r r_{speed} + w_3^r r_{term}$ $\max_{\pi} J_r(\pi, \omega)$ $c = w_1^c c_{collide} + w_2^c c_{out_road} + w_3^c c_{speed}$ s.t. $J_c(\pi, \omega) \leq \kappa_c$

Structured Causal Model

Set of variables Aggregation function

Parental Nodes in Causal Graph G

Exogenous Noise Variables

Definition: Safety-aware Bisimulation Relationship

Safety-aware Causal Representation for Trustworthy **Reinforcement Learning in Autonomous Vehicles**

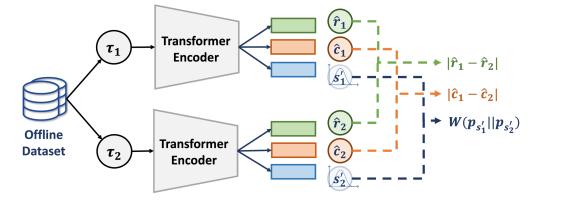
Haohong Lin, Wenhao Ding, Zuxin Liu, Yaru Niu, Jiacheng Zhu, Yuming Niu, and Ding Zhao

Carnegie Mellon University, Ford Motor Company

Methodology

FUSION: saFety-aware strUctural **Scenario representatION**

Step I: Causal Ensemble World Model


Step II: Causal Bisimulation Learning

- $\forall a \in \mathcal{A}, r(s_1, a) = r(s_2, a)$
- $\forall a \in \mathcal{A}, c(s_1, a) = c(s_2, a)$
- $\forall a \in \mathcal{A}, s' \in \mathcal{S}, p(s'|s_1, a) = p(s'|s_2, a)$

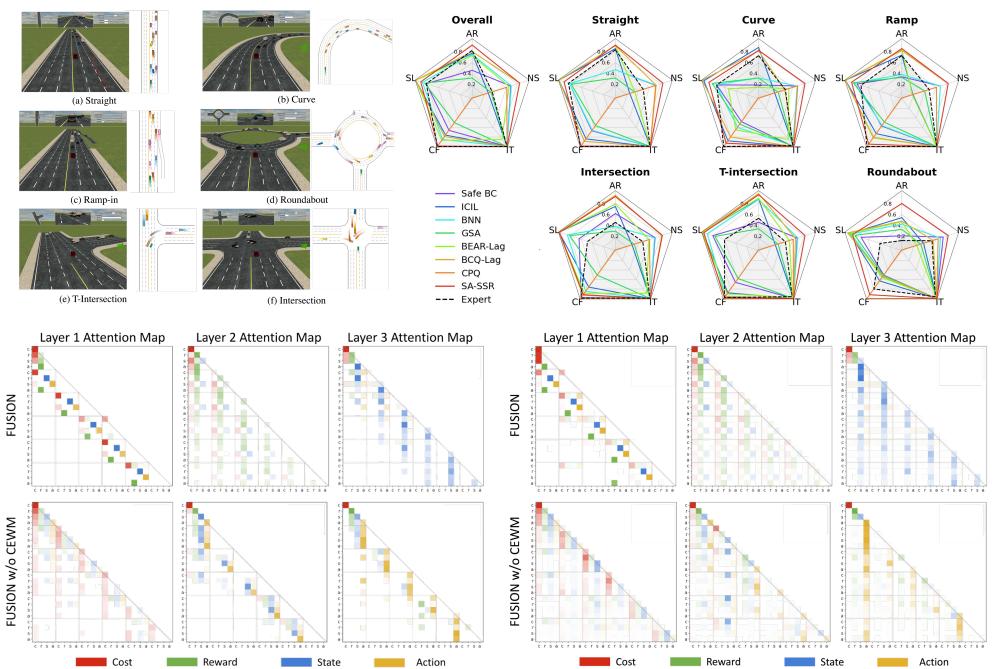
Definition: Safety-aware Bisimulation Metrics

$$d^{\pi}(s_1, s_2) = \mathbb{E}_{a_1 \sim \pi(\cdot | s_1), a_2 \sim \pi(\cdot | s_2)} \left[|r(s_1, a_1) - r(s_2, a_2)| \right]$$

$$+ \lambda |c(s_1, a_1) - c(s_2, a_2)| + \gamma W_2(\hat{p}(\cdot|s_1, a_1), \hat{p}(\cdot|s_2, a_2)) |$$

Algorithm 1: Training and Inference of FUSION **Data:** Context length H, Reward target R_0 , Cost limit C_0 **Result:** Policy $\pi_{\theta,\phi}$ /* Offline Training */ for $k = 0, \dots, N - 1$ do **Update Transformer** θ with CEWM by (4); **Update Encoder** ϕ with CBL by Alg. 2; /* Online Inference with context H $s_0 \leftarrow \text{env.reset()};$ $\mathbf{o} \leftarrow \{C_0, R_0, s_0\}$ $a_0 \leftarrow \pi_{\theta,\phi}(\mathbf{0});$ for $t = 1, \dots, T - 1$ do Rollout: $s_t, r_t, c_t = \text{env.step}(a_{t-1});$ Predict reward value: $\hat{R}(s_t, a_t) \leftarrow \phi^r(s_t);$ Predict cost value: $\hat{C}(a_t, s_t) \leftarrow \phi^c(s_t)$; Update rtg token: $R_t \leftarrow \max\{\hat{R}(s_t, a_t), R_{t-1} - r_t\};$ Update ctg token: $\hat{C}_t \leftarrow \min\{\hat{C}(s_t, a_t), C_{t-1} - c_t\};$ Update context: $\mathbf{o} \leftarrow \{\{a_{t-1}, C_t, R_t, s_t\}\}_{t-H:t};$ **Predict action:** $a_t \leftarrow \pi_{\theta,\phi}(\mathbf{o})$;

Experiments and Analysis


Evaluation Settings ($\kappa_c = 1$):

Policy Mismatch (imperfect demonstration)

Dynamics Mismatch (dense traffic)

Method	Policy Mismatch			Dynamics Mismatch		
	Reward (†)	Cost (\downarrow)	Succ. Rate (\uparrow)	Reward (†)	Cost (\downarrow)	Succ. Rate (\uparrow)
Safe BC	106.28 ± 7.49	12.79 ± 0.70	$0.47 {\pm} 0.10$	81.07±3.80	$9.44{\pm}0.55$	$0.12{\pm}0.06$
ICIL	$122.66 {\pm} 4.85$	11.07 ± 1.11	$0.76 {\pm} 0.05$	$88.21 {\pm} 5.30$	$7.29{\pm}0.72$	$0.32{\pm}0.05$
BNN	118.61 ± 3.09	4.46 ± 0.41	$0.74 {\pm} 0.11$	$113.35{\pm}5.68$	$19.16{\scriptstyle \pm 0.55}$	$0.59{\pm}0.06$
GSA	$89.94{\pm}6.84$	$13.18 {\pm} 1.26$	$0.34{\pm}0.08$	$102.40{\pm}6.44$	$11.88{\pm}0.98$	$0.03 {\pm} 0.02$
BEAR-Lag	109.62 ± 3.91	4.46 ± 0.29	$0.72 {\pm} 0.06$	113.38 ± 5.25	$7.86 {\pm} 0.66$	$0.32{\pm}0.05$
BCQ-Lag	111.36 ± 5.26	$0.89{\pm}0.08$	$0.79{\pm}0.08$	122.72 ± 7.64	$6.22 {\pm} 0.76$	$0.39{\pm}0.08$
CPQ	$9.01 {\pm} 0.87$	$1.05{\pm}0.18$	$0.00 {\pm} 0.00$	$7.47 {\pm} 0.59$	$0.71 {\pm} 0.09$	$0.00 {\pm} 0.00$
FUSION (Ours)	139.95±4.24	$0.52{\pm}0.06$	0.90 ±0.03	$117.40{\pm}4.30$	0.90 ±0.14	0.82 ±0.04
FUSION-Short	100.86 ± 3.40	$0.77 {\pm} 0.09$	$0.34{\pm}0.07$	98.63 ± 2.36	$0.79 {\pm} 0.06$	$0.34{\pm}0.04$
FUSION w/o CEWM	$94.24{\pm}6.50$	$0.67{\pm}0.11$	$0.41 {\pm} 0.06$	$81.70 {\pm} 3.82$	$0.60{\pm}0.04$	$0.24{\pm}0.04$
FUSION w/o CBL	$104.54{\pm}4.04$	$3.46 {\pm} 0.21$	$0.58{\pm}0.09$	$90.34{\pm}4.28$	$5.60{\pm}0.32$	$0.08{\pm}0.01$
FUSION	139.95±4.24	$0.52{\pm}0.06$	0.90 ±0.03	$117.40{\scriptstyle\pm4.30}$	$\textbf{0.90}{\pm 0.14}$	$0.82{\pm}0.04$
Expert Policy	131.32 ± 29.60	16.02 ± 9.46	$0.81 {\pm} 0.15$	$129.71 {\pm} 28.84$	17.58 ± 9.71	$0.72 {\pm} 0.20$

Result Analysis: *Diverse Config. / Attn. Map*

Take-aways

• CEWM transforms the offline RL as a sequence modeling problem, while adding more sequential awareness accounts for better results. • CBL empowers the structural dynamics by enforcing extra sparsity. Comprehensive empirical evaluations with safety-aware LfD baselines