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Methodology
Autonomous driving systems…
• Desires safety & generalizability

• Lacks structural awareness of the world

Existing approach along the pipeline…
• End-to-end solutions that are scalable?

• Balance safety and efficiency?

Problem Formulation

Take-aways

Constrained optimization: 

Structured Causal Model

Step I: Causal Ensemble World Model

Step II: Causal Bisimulation Learning

Evaluation Settings (𝜅! = 1): 
• Policy Mismatch (imperfect demonstration)

• Dynamics Mismatch (dense traffic)

Result Analysis: Diverse Config. / Attn. Map 

Definition: Safety-aware Bisimulation Relationship

Definition: Safety-aware Bisimulation Metrics

• CEWM transforms the offline RL as a sequence modeling problem, 
while adding more sequential awareness accounts for better results. 

• CBL empowers the structural dynamics by enforcing extra sparsity. 

• Comprehensive empirical evaluations with safety-aware LfD baselines
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Simulator: CARLA, MetaDrive
[Dosovitskiy et al., CoRL 17’], [Li et al., TPAMI 22’]

Dataset: Waymo, Argoverse
[Sun et al., CVPR 20’], [Chang et al., CVPR 19’]

Explicit: CDL, GRADER
[Wang et.al. ICML 22’], [Ding et al., NeurIPS 22’] 

Implicit: DBC, Denoised MDP.
[Zhang et al., ICLR 21’], [Wang et al., ICML 22’]

Explicit Constraints: InterFuser
[Shao et.al. CoRL 22’]

Value-based: SaFormer, CPQ
[Xu et al., AAAI 22’] [Zhang et al., ICLR 23’]
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