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SUMMARY

High-performing teams learn effective communication strategies to judiciously share

information and reduce the cost of communication overhead. Within multi-agent reinforce-

ment learning, synthesizing effective policies requires reasoning about when to communi-

cate, whom to communicate with, and how to process messages. Meanwhile, in real-world

problems, training policies and communication strategies that are able to generalize to mul-

tiple tasks, and adapt to unseen tasks, can improve the learning efficiency in multi-agent

systems. However, many methods in current literature suffer from efficiently learning a dy-

namic communication topology. At the same time, learning adaptable and scalable multi-

agent communication remains to be a challenge. This thesis develops algorithms to tackle

these two problems.

First, I propose a novel multi-agent reinforcement learning algorithm, Multi-Agent

Graph-attention Communication (MAGIC), with a graph-attention communication proto-

col in which we learn 1) a Scheduler to help with the problems of when to communicate

and whom to address messages to, and 2) a Message Processor using Graph Attention Net-

works (GATs) with dynamic graphs to deal with communication signals. The Scheduler

consists of a graph attention encoder and a differentiable attention mechanism, which out-

puts dynamic, differentiable graphs to the Message Processor, which enables the Scheduler

and Message Processor to be trained end-to-end. We evaluate our approach on a variety of

cooperative tasks, including Google Research Football. Our method outperforms baselines

across all domains, achieving ≈ 10.5% increase in reward in the most challenging domain.

We also show MAGIC communicates 27.4% more efficiently on average than baselines,

is robust to stochasticity, and scales to larger state-action spaces. Finally, we demonstrate

MAGIC on a physical, multi-robot testbed.

Second, based on MAGIC, I present a multi-agent multi-task reinforcement training

scheme, MT-MAGIC, and develop a multi-agent meta-reinforcement learning framework,

xii



Meta-MAGIC. Both methods can generalize and adapt to unseen tasks with different team

sizes. Meta-MAGIC initiatively explores using the RNN architecture to perform the adap-

tation process in multi-agent meta-reinforcement learning. Through experiments, we find

that Meta-MAGIC and MT-MAGIC can beat the baseline by a notable margin in multi-

task training and generalize well to new tasks. Meta-MAGIC is able to adapt quickly to

new tasks and keeps an upper bound of the performance of all methods through the inter-

actions with unseen scenarios in Predator-Prey. Fine-tuning from pre-trained models by

MT-MAGIC quickly achieves better performance on new tasks compared to training from

scratch, with only 11.28% of training epochs.

xiii



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Figure 1.1: This figure displays a scenario where three unmanned aerial vehicles with
limited visions (dash circles) are searching to rescue a lost animal (panda) in a forest.

Communication is a key component of successful coordination, enabling the agents

to convey information and cooperate to collectively achieve shared goals [1, 2]. In high-

performing human teams, human experts judiciously choose when to communicate and

whom to communicate with, communicating only when beneficial [3, 4, 5]. Each team

member exhibits the role of a communicator and message receiver, relaying informa-

tion to the right teammates and incorporating received information effectively. What is

more, multi-round (multi-hop) communication, i.e., multi-round of back-and-forth inter-

active message passing between agents, is usually required to establish complex coopera-

tion strategies [6]. Multi-round (multi-hop) communication is also commonly employed in

1



communication systems [7, 8].

Figure 1.2: This figure displays a scenario where three unmanned aerial vehicles are rea-
soning about when, whom, and how to communicate with two rounds of communication to
locate the lost animal (panda).

For example, in Figure 1.1, three unmanned aerial vehicles (UAVs) are searching to

rescue a lost panda in a forest. Each UAV can only get access to the vision around it. At the

start, none of them found the panda at their locations. After communication, they finally

decide to expand their rescue area to the east side of the forest, which is where the panda

locates at. Then the remaining problem is to decide how to communicate efficiently to

make wise decisions. Figure 1.2 depicts a scenario in which agents are reasoning about

when, whom, and how to communicate with two rounds of communication. Specifically,

the UAV agents should dynamically choose targeted agents to send messages, processed the

messages sent from other UAVs for later rounds of communication or the final decision.

Reinforcement learning provides a solution to multi-agent communication. Over the

past few years, reinforcement learning has received great attention from researchers due

to its success in multiple domains, games [9, 10], robotics [11, 12], traffic control [13,

14], healthcare [15], natural language processing [16, 17, 18], etc. Furthermore, there has

been recent success in multi-agent reinforcement learning (MARL) for Multiplayer Online
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Battle Arena (MOBA) games such as StarCraft II and Dota II [19, 20, 21]. MARL seeks

to enable agents to share information to improve team performance [22, 23, 24, 6, 25, 26].

However, most prior work in MARL fails to capture the complex relations among agents,

leading to low-performance and inefficient communication. While [22] and [27] are able

to efficiently decide when to broadcast messages, agents will broadcast these messages to

all other agents without targets, resulting in wasteful communication. Even with targeted

communication [6], failure to assess when to communicate results in poor performance,

as we display in section 3.6. However, determining when to communicate and whom to

communicate with is not enough. Selectively utilizing received messages can significantly

improve performance. Yet, none of these methods simultaneously address “when” and with

“whom”, and “how” to communicate while modeling agent interaction topology.

Figure 1.3: This figure depicts a simple multi-task learning and adaption task for the multi-
agent search and rescue example used in this chapter.

Besides communication, learning and adapting fast is a hallmark of human intelligence

[28]. People can usually quickly learn new things because they never learn from scratch.

They can utilize their past experiences, and generalize and adapt learned skills to new tasks.

To endow the intelligent agents with the same capability, multi-task learning [29, 30, 31],

transfer learning [32, 33, 30], and meta-learning [34, 35, 36] have been studied for years.

However, it remains to be challenging for multi-agent systems and MARL. In MARL,

learning to adapt not only requires learning to generalize agent’s own policy, but also re-

quires learning to generalize strategies for inter-agent coordination or communication to

3



new tasks. What is more, different tasks might require different team sizes. For exam-

ple, in Figure 1.3, we present an example using the before-mentioned multi-agent search

and rescue scenario. It can be difficult to perform multi-task learning on task one with two

agents and task two with three agents, then quickly adapt to an unseen task with four agents

during test time.

Recently, some work has explored solutions to such problems for MARL. Ad-hoc team

play seeks to enable agents to collaborate with unfamiliar agents [37, 38, 39]. These works

assume no communication protocol or only undirected message passing from a coach agent

to other agents. Some approaches employ Graph Neural Networks to propagate informa-

tion and communicate messages through a locomotion agent’s different body parts, which

can be structured as a graph and regarded as many sub-agents [40, 41, 42]. Their trained

policies show good generalization and transfer ability to different agent types with differ-

ent body sizes. Their tasks are limited to locomotion, and fix the communication topology

among sub-agents according to the static body structure. However, a dynamic commu-

nication strategy (learning “when” and “whom”) is usually required for high-performing

coordination. In the field of meta-reinforcement learning for multi-agent settings, many

methods focus on extending optimization-based methods [43, 36, 44] to a multi-agent team

[43, 45, 46, 47]. However, most prior work handles different multi-agent tasks with the

same size, and none of the previous work employs a black-box adaptation [48, 49], which

is a kind of commonly-used meta-reinforcement learning method.

1.2 Thesis Outline

The goal of this thesis is to solve the main problems existing in MARL mentioned in sec-

tion 1.1, and sketch a path to adaptable and scalable multi-agent communication. Accord-

ingly, this thesis is structured in two parts, Multi-Agent Graph-Attention Communication

(chapter 3), and Learning Scalable and Adaptable Multi-Agent Communication (chapter 4).

We will introduce the related work of both parts in chapter 2.
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1.2.1 Multi-Agent Graph-Attention Communication

The goal of the first part of this thesis (chapter 3) is to solve the existing “when”,“whom”,

and “how” problems, and develop a novel high-performing communication-based MARL

method, MAGIC. It focuses on designing a fully differentiable communication protocol

that supports learning dynamic hierarchical inter-agent interaction topology in favor of

more powerful multi-round communication. Specifically, we discuss our method within the

assumption of Partially Observable Markov Game, with augmentation of communication

signals. In the method section, I present the overall framework of the proposed protocol,

and its two key components, the Scheduler, and the Message Processor. Then I evaluate

and compare our method against several state-of-the-art communication-based approaches,

in three domains, including two grid worlds limiting agents’ visions, and one challenging

3D football game simulator. I also provide a communication efficiency evaluation across

different methods, and a physical robot demonstration at the end of chapter 3.

1.2.2 Scalable and Adaptable Multi-Agent Communication

Chapter 3 focuses on learning multi-agent communication for single tasks, without con-

sideration of its generality and adaptability. The goal of the second part of this thesis

(chapter 4) is to fill some above-mentioned gaps of current MARL literature, and extend

MAGIC to multi-tasks and meta-learning settings. Specifically, I present a multi-task train-

ing scheme based on chapter 3’s assumption and framework, which enables multi-task

learning across teams with different number of agents. Then I propose and describe a

meta-learning for MARL based on black-box adaptation. Next, I design experiments in

two domains to evaluate our methods. In the end of chapter 4, I discuss the results in three

aspects, multi-task training, zero-shot/few-shot testing, and fine-tuning.
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1.3 Thesis Contributions

This thesis proposes methodologies and and presents experiments of adaptable and scalable

multi-agent graph-attention communication within the framework of MARL. I list both its

theoretical/algorithmic and empirical contributions as follow.

1. We propose a novel communication protocol for MARL that enables the agents to

decide to when to communicate, whom to communicate with, and how to process the

received messages. Our method is able to dynamically learn multiple hierarchical

communication graphs to support more powerful multi-rounds of communication.

2. We implement extensive experiments on two previously conquered domains and one

challenging unsolved domain. Our proposed MAGIC achieves the best performance

in all domains. We also release a public codebase 1 of our method and baselines in

these domains.

3. We present a multi-agent multi-task reinforcement learning framework and design a

black-box adaptation meta-reinforcement learning method based on MAGIC, which

can handle tasks with different team sizes. To the best of our knowledge, no previous

work has applied black-box adaption for meta-learning in an MARL framework.

4. We implement a series of multi-task and adaptation experiments. Our methods

achieve good performance in most tested tasks. Importantly, we initiatively present

and analyze the results of tentative multi-agent meta-reinforcement learning with

RNN-based black-box adaptation.

1https://github.com/CORE-Robotics-Lab/MAGIC
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CHAPTER 2

RELATED WORK

In this chapter, we present related work and discuss existing problems with regards to

MARL and adaptable MARL, with a special focus on communication-based methods.

Coordinating multi-agent teams is a challenging computational problem [50, 51, 52,

53, 54, 55, 56, 57]. In multi-agent settings, each agent observes other agents as part of

the environment, causing the environment to appear dynamic and non-stationary. Further

difficulty arises due to the issue of credit assignment, where it is difficult for each agent to

deduce its own contribution to the team’s success (especially when there are only global

rewards). To solve these multi-agent challenges, many researchers in MARL [58] have pur-

sued centralized training and decentralized execution. Further extensions allow agents to

exchange messages during execution, allowing for increased performance. To improve ef-

ficiency of MARL, recently, some works are focused on incorporating multi-task learning,

transfer learning, or meta-learning into MARL frameworks.

In this chapter, we first depict the background of MARL with centralized critic in sec-

tion 2.1. Next, section 2.2 introduces and discusses the existing challenges of communication-

based MARL. Then, we introduce works that utilize Graph Neural Networks for graph

representations in multi-agent problems in section 2.3. In section 2.4, we present recent

advances and discuss problems in multi-agent multi-task and transfer reinforcement learn-

ing. At last, we introduce multi-agent meta-reinforcement learning in section 2.5.

2.1 MARL with Centralized Critic

Some works extend variants of actor-critic algorithms to multi-agent settings and learn de-

centralized policy through centralized critics without explicit communication channels [59,

60, 61]. MADDPG [59] is a MARL framework based on Deep Deterministic Policy Gradi-
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ent, and can be applied in both cooperative and competitive scenarios. COMA [60] extends

on-policy actor-critic and proposes a counterfactual baseline to address the credit assign-

ment problem. MAAC [61] is developed from Soft-Actor-Critic [62] and takes advantage

of the idea of the counterfactual baseline from COMA. The authors propose a specialized

attention mechanism over agents when training the critic, which allows for better scalability

as its input space increases linearly, instead of exponentially, with respect to the number of

agents. While these works present critical improvements in the field of MARL, the ability

to communicate and process information can further increase performance. As we show in

subsection 3.6.4, the ability to communicate results in a 88.9% performance gain for our

MAGIC.

2.2 MARL with Communication

Recent works have enabled agents to communicate and exchange messages during run-

time. Differentiable Inter-Agent Learning (DIAL) [24] builds up limited-bandwidth differ-

entiable discrete communication channels among agents. CommNet [23] extends to a con-

tinuous communication protocol designed for fully cooperative tasks. Agents receive aver-

aged encoded hidden states from other agents and use the messages to make informed de-

cisions. However, utilizing a sum or average of messages results in some information loss.

IC3Net [22] uses a gating mechanism to enable the agents to decide when to communicate,

and thus is amenable to competitive scenarios. However, both IC3Net and CommNet pro-

cess messages with a simple average. The proper integration of these messages is critically

important for communication, as displayed by the performance of our results in section 3.6.

TarMAC [6] achieves targeted communication with a signature-based soft-attention mech-

anism. The integrated signal for each agent is the weighted mean of values generated by all

agents. IMAC [26] uses a scheduler to aggregate compact messages through reweighting

all agents’ messages, and achieves the state-of-the-art performance on multi-agent commu-

nication under limited bandwidth. TarMAC and IMAC do not explicitly consider “when”
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and “whom” or the topology of agent interactions, which can help save communication

resources and process messages efficiently. ATOC [63], employs an attention mechanism

to decide if an agent should communicate in its observable field. SchedNet [27] proposes

a weight-based scheduler to pick agents who should broadcast their messages. However,

both ATOC and SchedNet have to manually configure their communication groups. Our

communication protocol proposed in chapter 3 intelligently decides when and with whom

to communicate through a graph-attention based Scheduler resulting in a large performance

gain (≈ 38% average increase in reward in our most difficult domain) compared to prior

work.

2.3 MARL using Graph Neural Networks

Graph Neural Networks (GNNs) are powerful tools for learning from data with graph struc-

tures [64, 65, 66, 67]. To model the interactions between agents, MARL has utilized GNNs

to allow for a graph-based representation [68, 69, 70, 71]. DGN [69] represents the multi-

agent environment as a graph and employ multi-head dot-production attention as the con-

volutional kernel to extract relational features between agents. MAGNet [70] learns multi-

agent policies in the Pommerman game by utilizing a relevance graph and message passing

mechanism. The graphs are static and constructed based on heuristic rules. [68] learns a hi-

erarchical topology of the communication structure dynamically by electing central agents.

HAMA [72] designs a hierarchical graph attention network to model the hierarchical re-

lationships between agents in both cooperative and competitive scenarios. G2ANet [73]

combines a hard-attention and a soft attention mechanism to dynamically learns interac-

tions between agents. In this work, we modify standard graph attention networks to be

compatible with a differentiable directed graph, allowing us to represent the interactions

among agents more accurately during communication.

In chapter 3, we improve upon prior frameworks by utilizing a Scheduler to solve the

problems of when to communicate and whom to address messages to, and a Message Pro-
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cessor using GATs with dynamic directed graphs to integrate and process messages. In this

way, we achieve efficient and targeted message sending and high-performance message

comprehension.

2.4 Multi-Agent Multi-Task and Transfer Reinforcement Learning

While most literature for multi-task and transfer RL has been focused on single-agent cases,

recently GNNs have shown strong generalization capability and superior performance in

multi-task and transfer settings for MARL. Within the GNN framework, agents coordinate

with each other through message passing. Wang et al. propose a GNN-based method Ner-

veNet, where information over the structure of an agent can be propagated, and then the

actions for different parts of the agent can be predicted [40]. Here, different parts of an

agent are modeled using a graph, and can be regarded as multiple sub-agents. NerveNet

outperforms other methods in a few transfer and multi-task learning tasks, where the tasks

vary in agent sizes (number of sub-agents) and components disabled. In this work, they fo-

cus on the locomotion control problems of an agent with a time-invariant underlying graph

structure for bodies and joints, instead of a real multi-agent cooperative task with dynamic

topology. Snowflake [41] addresses the overfitting problems of NerveNet and greatly im-

proves its asymptotic performance on tasks of larger scales (tasks with larger numbers of

sub-agents), by freezing the parameters of encoder, decoder, and message function during

training. Consequently, the policy can be trained more stably with smaller batch sizes, thus

the sample efficiency is also improved. Similarly, Huang et al. propose Shared Modular

Policies for agent-agnostic locomotion with a two-way message-passing mechanism [42].

Representing agent morphologies as graphs, Shared Modular Policies can control agents

with different skeletal structures, and perform zero-shot generalization to unseen agents

from a similar distribution and out-of-distribution agents. Still, the task is limited to loco-

motion and the topology of agent limbs (sub-agents) is static across time.

Some other works aim to learn adaptable policies with no communication or limited
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communication. Omidshafiei et al. [74] propose a fully-decentralized two-phase method

for partially observable domains, where the first phase enables coordination for single-task

MARL and the second phase distills agent-specific action-value networks into a generalized

multi-task network. In [75], a tensor and action space with fixed dimensionality is designed

to make zero-shot transfer to tasks with a different number of agents and other entities

possible. Cui et al. introduce a distributed scalable MARL method for networked traffic

control problems, and the trained polices can be successfully transferred with zero shot to

larger networks with more agents [76]. Ad-hoc teamwork [77] represents a challenging

problem that requires agents can adapt quickly to collaborate with unfamiliar teammates

without pre-coordination. Liu et al. investigates the adaptive MARL and communication

for ad-hoc team playing by employing a coach with omniscient broadcasting team-level

strategies periodically [39]. During training, the tasks are sampled from a fixed set of team

compositions, and the trained model can remain high performance with sparse communi-

cation for zero-shot generalization on unseen tasks with more agents. Ad-hoc teamwork

problems are also explored and solved through reward attribution decomposition [37] and

teamwork-conditional marginal utility estimation [38].

The first goal of chapter 4 is to present a communication-based MARL framework that

can perform multi-task learning across teams with different numbers of agents, and can

be generalized to unseen tasks with different team sizes. Distinguished from the previ-

ous works, our communication protocol supports dynamic patterns across timesteps and

multiple rounds in the multi-task setting.

2.5 Multi-Agent Meta-Reinforcement Learning

Most meta-reinforcement learning methods are designed for single-agent domains, and can

be grouped into three categories by the way of adaptation: Black-box adaptation methods

[78, 48, 49], optimization-based methods [36, 79, 80], and the inference-based methods

[81, 82, 83].
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Existing multi-agent meta-reinforcement learning methods are under exploration, and

are mostly optimization-based. In [43], Reptile [84], which performs a first-order approxi-

mation of MAML [36], is applied to MADDPG [59] to achieve meta-reinforcement learn-

ing (meta-RL) for Trans-Conditions and Trans-Scenarios tasks. This approach attempts to

transfer the meta knowledge from single-agent tasks to a simple three-agent cooperative

navigation task. Hu et al. propose a distributed value-decomposition-based RL solution

to the problem of the trajectory design for drone base stations [45]. MAML is employed

by each agent’s individual policy and value networks for different user request realizations.

Dif-MAML [85] proposes a decentralized MAML-based meta-RL method that enables dis-

tributed agents to explore tasks stemming from potentially different task distribution. It can

match the performance of a centralized solution while enjoying a few advantages of decen-

tralized methods such as robustness and privacy. Huang et al. [86] treat each agent as an

independent task, and design a meta actor-critic with a two-layer optimization process to

improve the performance of MADDPG [59] and MATD3 [87]. Some works use recurrent

structures like LSTM [88] to generate guidance for the optimization processes of multi-

ple agents. In MAMRL [46], meta-agent acts as a optimizer that learns to optimize the

networks of local agents (optimizee), using LSTM that is inspired from [44]. The local

agents in this architecture are distributed and each local agent interacts with an individual

energy environment. Zhang et al. employ a LSTM structure to provide the update direction

for each agent’s communication network which determines the agent-agent communica-

tion topology [47]. Meta-PG [89] models the nonstationary environment as a sequence of

stationary tasks, and the agent can meta-learn to anticipate the changes and update when

playing against an opponent that changes its strategy incrementally. Meta-MAPG [90]

extends Meta-PG by modeling the learning process of all agents and adding peer learning

gradients. A very recent work falls into the category of inference-based methods [91]. They

use the history information of communication message to infer the task-specific communi-

cation pattern. However, none of the previous work explores using a black-box model such
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as RNN to adapt to new tasks for multi-agent meta-RL. And in most of the above works,

the number of agents across different multi-agent tasks are limited to keeping fixed, while

many real-world problems require the model to be deployed in size-variant and scalable

teams.

To fill the gaps in existing research mentioned above, the second goal of chapter 4 is to

propose and evaluate a RNN-based multi-agent meta-RL method that can be meta-trained

and meta-tested on tasks with different team sizes.
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CHAPTER 3

MAGIC: MULTI-AGENT GRAPH-ATTENTION COMMUNICATION

3.1 Introduction

In this chapter, we propose Multi-Agent Graph-attentIon Communication (MAGIC) 1, a

novel graph communication protocol that determines “when” and “whom” with to com-

municate via an end-to-end framework. We set a new state-of-the-art in communication-

based multi-agent reinforcement learning by modeling the topology of interactions among

agents (the local and global characterization of connections between agents [93]) as a dy-

namic directed graph that accommodates time-varying communication needs and captures

the relations between agents. Our proposed framework emulates the features of an effec-

tive human-human team through its key components, 1) the Scheduler, which helps each

agent to decide when it should communicate and whom it should communicate with, and

2) the Message Processor, which integrates and processes received messages in preparation

for decision making. We find MAGIC produces high-performance, cooperative behavior

through its efficient communication protocol.

Our Scheduler consists of a graph attention encoder and a differentiable hard atten-

tion mechanism to decide when to communicate and whom to communicate with. This

information is encoded within a directed graph, allowing us to represent the interaction

among agents precisely. The Message Processor, consisting of a Graph Attention Network

(GAT), utilizes received messages and the directed graph to intelligently and efficiently

process messages. The encoded messages are then used in each agent’s policy, leading to

high-performance cooperation and efficient communication, as shown in section 3.6. We

1This work was published by ACM at the 20th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS) [92]. It also won the best paper award at Multi-Agent Interaction and Relational
Reasoning Workshop in ICCV 2021.
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provide the following detailed contributions:

1. Develop a novel graph-attention communication protocol for MARL that utilizes 1)

a Scheduler to solve the problems of when to communicate and whom to address

messages to, and 2) a Message Processor using GATs with dynamic directed graphs

to integrate and process messages.

2. Enable GATs in the Message Processor to maintain gradients from graph-based op-

erations, which is not supported by standard GATs. In this way, the framework is

fully differentiable and can be trained in an end-to-end manner.

3. Outperform prior methods across three domains, including the Google Research

Football environment, achieving a 10.5% increase in reward. Further, MAGIC learns

to communicate 27.4% more efficiently than the average baseline. These results set

a new state-of-the-art in communication-based MARL.

4. Demonstrate our algorithm on physical robots in a 3-vs.-2 soccer scenario on a phys-

ical, multi-robot testbed.

In this chapter, we start with section 3.2 by introducing preliminaries of Partially Ob-

servable Markov Game, Policy Gradients and Graph Neural Networks. Next, we propose

and describe our method MAGIC in section 3.3. Then, section 3.4 and section 3.5 provide

details in evaluation environments and training, respectively. In section 3.6, we present

and discuss the experiment results. Then, a physical robot demonstration is shown in sec-

tion 3.7. At last, we conclude this chapter in section 3.8.

3.2 Preliminaries

3.2.1 Partially Observable Markov Game

A Markov Game [94] is the multi-agent version of Markov Decision Process (MDP). We

are primarily concerned with a partially observable Markov game. A partially observable
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Markov game (POMG) for N agents can be defined by a set of global states, S, a set

of private observations for each agent, O1, O2, . . . , ON , a set of actions for each agent,

A1, A2, . . . , AN , and the transition function, T : S × A1 × . . . × AN 7→ S. In each

time step, agent i chooses action, ai ∈ Ai, obtains reward as a function of state, S, and

its action ri : S × Ai 7→ R, and receives a local observation oi : S 7→ Oi. The initial

state is defined by a initial state distribution ρ. Agent i aims to maximize its discounted

reward Ri =
∑T

t=0 γ
trti , where γ ∈ [0, 1] is a discounted factor. Our work is based on the

framework of POMG augmented with communication.

3.2.2 Reinforcement Learning: Policy Gradients

The Policy Gradient method (Equation 3.1) is widely used in reinforcement learning (RL)

tasks to perform gradient ascent on the agent policy parameters, θ, to optimize the total

discounted reward, J(θ) = Es∼pπ ,a∼πθ
[R]. pπ is the state distribution, πθ is the policy

distribution, and Rt =
∑T

t′=t γ
t′−tr(st′ , at′).

∇θJ(θ) = Es∼pπ ,a∼πθ

[ T∑
t=1

∇θ log πθ(at|st)Rt

]
(3.1)

In lieu of Rt, we use the advantage function, Aπ(st, at) = Rt − V (st), to decrease the

variance of the estimated policy gradient, where V (st) is the value function.

3.2.3 Graph Neural Networks

In Graph Neural Networks (GNNs), each GNN layer computes the node representation

by message passing, where each node aggregates the feature vectors from its neighboring

nodes in the graph at the previous layer. The update rule for node representations by a

GNN layer is displayed in Equation 3.2.

h
(l)
i = σ

∑
j∈Ni

1√
didj

(h
(l−1)
j W (l))

 (3.2)
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Here, h(l)
i represents the features of node i, at layer l. Ni is the set of neighboring nodes

of node i, di = |Ni| is the degree of node i, W (l) is a learnable weighting matrix for layer

l, and σ(·) is a nonlinear activation function. In this work, we enable our GATs within the

Message Processor to function with differentiable graphs (subsection 3.3.3), allowing for

end-to-end training.

3.3 Method

In this section, we introduce our proposed Multi-Agent Graph-attentIon Communication

protocol, MAGIC. We consider a partially observable setting of N agents, where agent i

receives local observation, oti, at time, t, containing local information from the global state,

S. The agent, i, learns a communication-based policy, πi, to output a distribution over

actions, a(t)i ∼ πi, at each time step, t. Here, we present an overview of our framework, the

description of our protocol’s key components (i.e., the Scheduler and Message Processor),

and our training procedure.

3.3.1 Overview

Our proposed graph-attention communication protocol is displayed in Figure 3.1. At time

step, t, the observation for each agent, oti, is first encoded using an agent-specific fully-

connected layer (FC). The encoded observation is passed into an agent-specific LSTM cell

to generate a hidden state, ht
i, as shown in Equation 3.3.

hti, c
t
i = LSTM(e(oti), h

t−1
i , ct−1

i ) (3.3)

In this equation, cti is the cell state for agent, i, at time step, t, and e(·) is a fully-connected

layer acting as an encoder for the observation. The hidden state, ht
i, is then encoded as a

message, mt(0)
i = em(h

t
i), through the encoder, em(·) (a fully-connected layer). Here, the

exponent notation for the message, mt(0)
i , denotes that message is for agent i, and is prior

to any message aggregation or processing. We refer to this stage, where the message has
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Figure 3.1: This figure displays the framework of our multi-agent graph-attention commu-
nication protocol.

not been processed, as round 0, giving the exponent notation, t(0).

As shown in Figure 3.1, we define the function module to help agents decide whom

to send messages at each time step as the “Scheduler” and define the function module to

process messages as “Message Processor.” The Scheduler and the Message Processor may

include multiple sub-schedulers and sub-processors, respectively. Prior work has termed

the procedure of processing messages for multiple iterations as multi-round communication

[6]. As multi-round communication has been shown to improve performance, our protocol

supports L rounds of communication, where L ∈ N. A round of communication, l, is de-

fined as a forward pass through a sub-scheduler and sub-processor. As shown in Figure 3.1,

the encoded messages, mt(0)
i are passed into Sub-Scheduler 1 and Sub-Processor 1 (i.e., the
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Figure 3.2: This figure displays the details and components of the Scheduler.

sub-scheduler and sub-processor at round 1).

The Sub-Scheduler l (at round, l ∈ L) will output an adjacency matrix, Gt(l). Gt(l) is

a directed graph that indicates the targeted receivers for each agent at time step, t. Gt(l) is

utilized by the Sub-Processor, l, to produce a set of integrated messages, {mt(l)
i }N1 , where

m
t(l)
i is the integrated message for agent, i, at time step, t. The integrated messages for

each agent, i, can be incorporated into agent i’s policy (in the case where we are on the last

round of communication, l = L) or be further processed by more rounds of communication

(l < L). If the messages are to be further processed, the set of messages outputted from

round l, {mt(l)
i }N1 , are passed into the Sub-Scheduler l + 1 and the Sub-Processor l + 1,

producing adjacency matrix Gt(l+1) and messages {mt(l+1)
i }N1 respectively.

The message outputted from the Message Processor, mt(L)
i , for agent, i, is encoded

through a fully-connected layer, e′m(·), to produce an intelligently integrated message,

mt
i = e′m(m

t(L)
i ). mt

i is concatenated with the hidden state, ht
i, to produce the input feature

to the policy head and the value head. The policy head is a fully-connected layer followed

by a softmax function. We sample the action for the i-th agent at time step, t, from the

policy output distribution: ati ∼ πi(a
t
i|oti). The value head is a single fully-connected layer

and serves as a baseline function.
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3.3.2 The Scheduler

The Scheduler decides when each agent should send messages and whom each agent should

address messages to, as shown in Figure 3.2. As a black-box, the Scheduler takes as input

the encoded messages, {mt(0)
i }N1 , and outputs the directed graphs, {Gt(l)}L1 , as represented

in fSched(·) shown in Equation 3.4.

{Gt(l)}L1 = fSched

(
m

t(0)
1 , · · · ,mt(0)

N

)
(3.4)

As noted in subsection 3.3.1, the Scheduler consists of L Sub-Schedulers, each produc-

ing an adjacency matrix Gt(l). A Sub-Scheduler consists of a GAT encoder and a hard atten-

tion mechanism that uses a multi-layer perceptron (MLP) and a Gumbel Softmax function

[95]. The GAT encoder helps encode local or global information for an agent efficiently,

and it is only used in the first Sub-Scheduler. We adopt the same form of GATs as proposed

in [96], where the attention mechanism is expressed in Equation 3.5.

αS
ij =

exp
(
LReL

(
aTS [WSm

t(0)
i ||WSm

t(0)
j ]

))
∑

k∈Nt
i∪i

exp
(
LReL

(
aTS [WSm

t(0)
i ||WSm

t(0)
k ]

)) (3.5)

Here, LReL(·) is the LeakyReLU [97], aS ∈ RD′ is a weighting vector, N t
i ∪ i is the

set of neighboring agents for the i-th agent, including agent i, at time step, t, and WS ∈

RD′×D is a weighting matrix, where D′ and D refer to the output feature cardinality and

message cardinality, respectively. The node features of each agent are obtained through

Equation 3.6.

eti = ELU

 ∑
j∈Nt

i∪i

αS
ijWSm

t(0)
j

 (3.6)

Here, ELU(·) is the Exponential Linear Unit (ELU) function. After concatenating the node

feature vectors pairwise, supposing Et
i,j = (eti||etj), we obtain a matrix Et ∈ RN×N×2D,

where Et
i,j represents a high-level representation of relational features between the i-th and

j-th agent.
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Figure 3.3: This figure displays the detailed structure of a Sub-Processor.

Setting Et as the input to an MLP followed by a Gumbel Softmax function, we can

get an adjacency matrix Gt(l), consisting of binary values, representing a directed graph. If

the element gt(l)ij in Gt(l) is 1, the j-th agent will send a message to i-th agent. Otherwise

(gt(l)ij = 0), the j-th agent will not send any message to i-th agent.

3.3.3 The Message Processor

The Message Processor helps agents integrate messages for intelligent decision making. As

a black-box, it takes in the encoded messages, {mt(0)
i }N1 , and the graphs generated by the

Scheduler, Gt(1) · · · , Gt(L), and outputs the processed messages, {mt(L)
i }N1 . We represent

the Message Processor in Equation 3.7.

{mt(L)
i }N1 = fMP

(
m

t(0)
1 , · · · ,mt(0)

N , Gt(1), · · · , Gt(L)
)

(3.7)

As stated in subsection 3.3.1, the Message Processor consists of L Sub-Processors, each

producing a set of encoded messages, {mt(l)
i }N1 . A Sub-Processor, for a single round of

communication, includes a designed GAT layer receiving messages, {mt(l−1)
i }N1 , from all

agents and the adjacency matrix, Gt(l), as input, as shown in Figure 3.3. The Sub-Processor
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helps agents process received messages. In Equation 3.8, we display the calculation of

the attention coefficient in our designed GAT layer, which maintains the gradient from the

Scheduler.

αP
ij =

g
t(l)
ij exp

(
LReL

(
(a

(l)
P )⊤[W

(l)
P m

t(l−1)
i ||W (l)

P m
t(l−1)
j ]

))
∑N

k=1 g
t(l)
ik exp

(
LReL

(
(a

(l)
P )⊤[W

(l)
P m

t(l−1)
i ||W (l)

P m
t(l−1)
k ]

)) (3.8)

Here, l is the round of communication, gt(l)ij ∈ {0, 1}is a binary value in the adjacency ma-

trix, Gt(l), W (l)
P ∈ RD′′×Dis a weighting matrix, and a

(l)
P ∈ RD′′is a weighting vector. It

should be noted that our graphs are capable of a self-loop, where an agent will “send” a

message to itself, and use its own message in the integration of received messages. While

the calculation of the coefficient for a standard GAT layer is a non-differentiable operation

for the graph, using Equation 3.8 allows us to retain the gradient of gt(l)ij . Thus, the Sched-

uler can preserve the gradient flow for end-to-end training, avoiding the need to design

an extra loss function to train the Scheduler. In practice, we find using multi-head atten-

tion [96] and adding a bias to the output message to be beneficial. The output message of

sub-processor l can be obtained via Equation 3.9.

m
t(l)
i = ELU

 N∑
j=1

αP
ijW

(l)
P m

t(l−1)
j

 (3.9)

3.3.4 Training

In our experiments, the parameters of the fully-connected layers and LSTM in the policy

network are shared across homogeneous agents to improve training efficiency. We employ a

multi-threaded synchronous multi-agent policy gradient [22] and utilize an extra value head

in the policy network to estimate the value function, Vϕ(o
t
i), at observation oti, which will

serve as a state-independent baseline. In addition to optimizing the discounted total reward

with policy gradient, the model also minimizes the squared error between the estimated

value and the Monte-Carlo estimate. The two loss functions are balanced by a coefficient,

β. We define the overall loss function as L(·) and the policy function denoted as πθ(a
t
i|oti).

Parameters, θ, of the policy and, ϕ, of the value function, share most of their parameters
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except the parameters in the policy and value heads. Our model is updated via minimizing

the loss function displayed in Equation 3.10.

∇θ,ϕL(θ, ϕ) =
1

tmax

N∑
i=1

tmax∑
t=1

[−∇θ log πθ(a
t
i|oti)(Rt

i − Vϕ(o
t
i))

+β∇ϕ(R
t
i − Vϕ(o

t
i))

2]

(3.10)

Here, Rt
i is the discounted total reward for agent i starting from time step t in an episode,

and tmax is the number of steps taken within a batch. Different threads in training share

the parameters, θ, and ϕ, and calculate their own gradients. The threads synchronously

accumulate gradients and update θ and ϕ within each batch. A summary of the training

procedure of our multi-agent graph-attention communication model and the algorithm is

described in Algorithm 1. In Algorithm 1, we start by initializing the number of agents

alongside several training parameters, including threads, batch size, maximum steps in an

episode, and maximum steps in a batch, shown in Step 1. For each update per thread, we

start by initializing a set of thread parameters and a replay buffer, D, as displayed in Step

4. After receiving the initial hidden state and observation for each agent (shown in Steps

7 and 8), we can utilize the Scheduler (containing L sub-schedulers) to output adjacency

graphs, determining the communication pattern. The Message Processor (containing L

sub-processors) can use these graphs and the encoded messages from round zero to produce

messages for each agent, as shown in Steps 13 and 14. Once each agent has its selected

message inputs, we can determine an action probability distribution from the policy and

perform the action sampled from this distribution, shown in Steps 15 and 16. Storing this

information in our replay buffer, we can then complete the episode and proceed to compute

gradients with Equation 3.10, as shown in Step 26. Accumulating gradients across threads,

we can update our policy and value function, as shown in Steps 29 and 31.
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Algorithm 1 Training Multi-Agent Graph-attentIon Communication (MAGIC)
1: Initialize max updates M , agents N , threads L, max steps in an episode Te, max steps

in a batch Tb

2: for update = 1 to M do dθ ← 0, dϕ← 0
3: for thread k = 1 to K do in parallel
4: Initialize params θk ← θ, ϕk ← ϕ, buffer D, step-count t← 1
5: while t < Tb do
6: Initialize thread step counter t′ ← 1
7: Initialize ht−1

i , ct−1
i for each agent i

8: Reset environment and get oti for each agent i
9: while t′ < Te and not terminal do

10: ht
i, c

t
i = LSTM(e(oti), h

t−1
i , ct−1

i ) for each agent i
11: m

t(0)
i = em(h

t
i) for each agent i

12: {Gt(l)}L1 = fSched

(
m

t(0)
1 , · · · ,mt(0)

N

)
13: {mt(L)

i }N1 = fMP

(
m

t(0)
1 , · · · ,mt(0)

N , Gt(1), · · · , Gt(L)
)

14: mt
i = e′m(m

t(L)
i ) for each agent i

15: Calculate πθk(a
t
i|oti) and Vϕk

(oti) for each agent i
16: Perform ati ∼ πθk(a

t
i|oti) for each agent i

17: Receive rti and ot+1
i for each agent i

18: Store (oti, a
t
i, πθk(a

t
i|oti), Vϕk

(oti), r
t
i , o

t+1
i ) in D

19: t← t+ 1, t′ ← t′ + 1
20: end while
21: end while
22: tmax ← t
23: for t = tmax, tmax − 1, · · · , 1 do
24: Rt

i = 0 if ot+1
i is terminal else Rt

i = rti + γRt+1
i using D

25: end for
26: Calculate dθk and dϕk using D with Equation 3.10
27: end for
28: for thread k = 1 to K do
29: Accumulate gradients: dθ ← dθ + dθk, dϕ← dϕ+ dϕk

30: end for
31: Perform update of θ using dθ, and of ϕ using dϕ
32: end for
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3.4 Evaluation Environments

We utilize three domains, including the Predator-Prey [22], Traffic Junction [23] and com-

plex Google Research Football environment [98], to evaluate the utility of proposed com-

munication protocol. Predator-Prey and Traffic Junction are common MARL benchmarks

[23, 6]. Google Research Football (GRF) presents a difficult challenge, as it has sparse

rewards, stochasticity, and adversarial agents.

3.4.1 Predator-Prey

Figure 3.4: The visualization of the 10-agent Predator-Prey task. The predators (in red)
with limited visions (light red region) of size 1 are searching for a randomly initialized
fixed prey (in blue).

We utilize the predator-prey environment from [22]. Here, there are N predators with

limited visions searching for a stationary prey. A predator or a prey occupies a single cell

within the grid world at any time, and its location is initialized randomly at the start of
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each episode. The state at each point in the grid is the concatenation of a one-hot vector

which represents its own location and binary values indicating the presence of predator and

prey at this point. The observation of each agent is a concatenated array of the states of all

points within the agent’s vision. The predators can take actions up, down, left, right or

stay. We utilize the ‘mixed’ mode of Predator-Prey in which the predator incurs a reward

−0.05 for each time step until the prey is found. An episode is defined as successful if all

the predators find the prey before a predefined maximum time limit. We test two levels

of difficulty in this environment. The difficulty varies as the grid size, and the number of

predators increases, as more coordination is required to achieve success. The corresponding

grid sizes and the number of predators are set to 10× 10 with 5 predators and 20× 20 with

10 predators. The 10-agent task is shown in Figure 3.4. We set the maximum steps for an

episode (i.e., termination condition) to be 40 and 80, respectively. The vision is set to a unit

length. We define a higher-performing algorithm in this domain as one that minimizes the

average steps to complete an episode.

3.4.2 Traffic Junction

The second domain we utilize is the Traffic Junction environment. This environment, com-

posed of intersecting routes and cars (agents) with limited vision, requires communication

to avoid collisions. Cars enter the traffic junction from all entry points at each time step

with a probability parrive, and are randomly assigned a route at the start. The maximum

number of cars in the environment at a specific time is denoted by Nmax, which varies

across difficulty levels. A car occupies one cell at a time step and can take action “gas” or

“brake” on its route. The state of each cell is the concatenation of a one-hot vector repre-

senting its location, and a value indicating the number of cars in this cell. The observation

of each car is the concatenation of its previous action, route identifier, and all states of the

cells within its vision. Two cars collide if they are in the same location, resulting in a reward

of −10 for each car. The simulation terminates once all agents reach the end of its route
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Figure 3.5: The visualization of the hard level Traffic Junction task. This task consists of
four, two-way roads on a 18 × 18 grid with eight arrival points, each with seven different
routes. Each agent is with a limited vision of size 1.
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or if the time surpasses the predefined timeout parameter. Collisions will not incur “death”

of agents or terminate the simulation. The agents will only be “dead” when it reaches the

end of its route. There is a time penalty −0.01τ at each time step, where τ is the number

of time steps that have passed since the agent’s entry. An episode is considered successful

if there are no collisions within the episode.

We validate our algorithm on three difficulty levels. The easy level consists of two,

one-way roads on a 7 × 7 grid. There are two arrival points and two possible routes for

each arrival point, and at most five agents (Nmax = 5, parrive = 0.3). For the medium level,

the junction consists of two, two-way roads on a 14× 14 grid with four arrival points, each

with three different routes. Here, there are at most ten agents (Nmax = 10, parrive = 0.2).

The hard level, as shown in Figure 3.5, consists of four, two-way roads on a 18 × 18 grid

with eight arrival points, each with seven different routes, and there are at most twenty

agents (Nmax = 20, parrive = 0.05). The average success rate (i.e., no collisions within

an episode) is used in our evaluation. We set the limited vision parameter to 1 for both

levels. Similar to [22], in Traffic Junction, we fix the gating action to be 1 for IC3Net and

TarMAC-IC3Net, set all the hard attention outputs in GA-Comm to be 1, and set all the

graphs used by the Message Processor in our method to be complete.

3.4.3 Google Research Football

Our final domain of Google Research Football [98] presents a challenging, mixed cooperative-

competitive, multi-agent scenario with high stochasticity and sparse rewards. Google Re-

search Football (GRF) is a physics-based 3D soccer simulator for reinforcement learning.

This domain presents an additional challenge as there are opponent artificial agents (AIs),

significantly increasing the complexity of the state-action space. We present a depiction of

this environment in Figure 3.6. To align with the partially observable setting, we extract the

local observations from the provided global observations. The local observations include

the relative positions of the players on both teams, the relative position of the ball, and
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Figure 3.6: The visualization of 3 vs. 2 in Google Research Football. The five people
shown in this figure are three offending players, one defending player and the goalie (left
to right).

one-hot encoding vectors which represent the ball-owned team and the game mode. GRF

provides 19 actions including moving actions, kicking actions, and other actions such as

dribbling, sliding and sprint. GRF provides several pre-defined reward signals, consisting

of a scoring and a penalty box proximity reward. The penalty box proximity reward is

shaped to push attackers to move forward towards certain locations. Many MARL frame-

works have required these highly shaped rewards functions to perform well [98]. However,

we choose to use only the scoring reward to verify the ability of our algorithm and base-

lines to function in a high-complexity stochastic domain with sparse rewards. Accordingly,

the only reward all agents will receive in our evaluation is +1 when scoring a goal. The

termination criterion is the team scoring, ball out of bounds, or possession change. We

evaluate algorithms in a standard scenario 3 vs. 2 from Football Academy [98], as shown

in Figure 3.6, where we have 3 attackers vs. 1 defender, and 1 goalie. The three offending

agents are controlled by the MARL algorithm, and the two defending agents are controlled

by a built-in AI. We find that utilizing a 3 vs. 2 scenario challenges the robustness of

MARL algorithms to stochasticity and sparse rewards. In this domain, we seek to maxi-

mize the average success rate (i.e., a goal is scored) and minimize the average steps taken

to complete an episode, thereby scoring a goal in the shortest amount of time. We show in
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subsection 3.6.3 that our method outperforms all prior state-of-the-art baselines.

3.5 Training Details

We distribute the training over 16 threads and each thread runs batch learning with a batch

size of 500. The threads share the parameters of the policy network and update syn-

chronously. There are 10 updates in one epoch. We use RMSProp with a learning rate

of 0.001 in all the domains except the ten-agent one in Predator-Prey, where we use 0.0003.

The value coefficient, β, and discount factor, λ, are set to 0.01 and 1 respectively. The size

of each agent’s hidden state for LSTM is 128. The sizes of original encoded messages and

the final messages for decision making are 128. 2 or 3 layers of GNNs have been used in

practice and shown to work well [96]. Empirically, we find that two rounds of communi-

cation achieve the best performance with comparable training speeds to simpler methods

such as CommNet and IC3Net. As such, we use two rounds of communication to test the

performance of our method in all domains, and the number of heads for the first GAT layer

(sub-processor 1) is set to be 4, 4, 1 in Predator-Prey, Traffic Junction and GRF respectively,

and the number of heads for the output GAT layer (sub-processor 2) is set to be 1. We use

one round of communication for efficiency evaluation for fair comparison, and the number

of heads for the GAT layer is 1. The output size of the GAT encoder in the Scheduler is

set to 32. We implement our method and baselines on each task over 5 random seeds and

average the results.

3.6 Results and Discussion

In this section, we evaluate the performance of our proposed method on three environ-

ments, including Predator-Prey [22], Traffic Junction [23], and Google Research Football

[98]. We benchmark our approach against a variety of state-of-the-art communication-

based MARL baselines, including CommNet [23], IC3Net [22], GA-Comm [73], and

TarMAC-IC3Net [6]. We implement our method and baselines on each task, averaging

30



the best performance at convergence over 5 random seeds. Following an analysis of per-

formance, we evaluate MAGIC’s communication efficiency, concluding MAGIC presents

a new state-of-the-art in both performance and efficiency in communication-based MARL.

We provide additional training details within section 3.5 of the supplementary.

3.6.1 Predator-Prey

Figure 3.7 depicts the average steps taken for the predators to locate the prey. In both the

Table 3.1: The number of steps taken to complete an episode at convergence in Predator-
Prey.

Method 10× 10, 5 agents 20× 20, 10 agents

MAGIC (Our Approach) 12.72± 0.03 32.88± 0.14
CommNet [23] 13.16± 0.04 73.12± 0.68
IC3Net [22] 15.60± 0.35 55.13± 4.80
TarMAC-IC3Net [6] 13.32± 0.11 36.16± 0.97
GA-Comm [73] 13.06± 0.09 35.78± 0.37

five- and ten-agent cases, our method converges faster and can achieve better performance

than the baselines. Our method converges 52% faster than the next-quickest baseline while

still achieving the highest performance. Table 3.1 shows the results of average steps taken

to reach the prey at convergence. While approaches such as GA-Comm and TarMAC-

IC3Net learn competitive policies for the five agent case, these benchmarks perform much

worse than our algorithm in the ten agent case, suggesting a lack of scalability.

Predator-Prey Communication Heatmaps - Figure 3.8 depicts communication heatmaps

in Predator-Prey domain with 10 agents in an episode of 31 steps. The color is associ-

ated with the probability of communication, with darker colors representing more intensive

communication between the two agents. The vertical axis represents message receivers,

and the horizontal axis represents message senders. Agent 5 first reaches the prey at step

23, and the other 9 agents quickly reach the prey in the following 7 steps. Figure 3.8(a) dis-

plays the communication before the first agent (agent 5) reaches its prey and Figure 3.8(b)

displays the communication afterwards. We can see that agents communicate with each
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(a) Low difficulty Predator-Prey Environment with size 10× 10 and 5 agents

(b) High difficulty Predator-Prey Environment with size 20× 20, 10 agents

Figure 3.7: This figure displays the average steps taken to finish an episode as training
proceeds in each level of the Predator-Prey environment. The shaded regions represent
standard errors. A lower value for steps taken on the vertical axis is better.
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(a) Before prey found. (b) After prey found.

Figure 3.8: Heatmaps of the communication graphs learned by the Scheduler in the
Predator-Prey domain.

Table 3.2: The success rate at convergence in Traffic Junction.

Method 7× 7, 14× 14, 18× 18,
Nmax = 5, Nmax = 10, Nmax = 20,
parrive = 0.3 parrive = 0.2 parrive = 0.05

MAGIC (Our Approach) 99.9± 0.1 % 99.9± 0.1 % 98.0± 0.8 %
CommNet [23] 99.3± 0.6% 97.2± 0.3% 66.7± 1.6%
IC3Net [22] 97.8± 1.0% 96.0± 0.7% 85.4± 2.5%
TarMAC-IC3Net [6] 84.8± 4.5% 95.5± 1.3% 88.1± 1.9%
GA-Comm [73] 95.9± 0.1% 97.1± 0.7% 95.8± 1.1%

other intensively before finding the prey. After finding the prey, communication becomes

unnecessary, and the learned communication graphs should be sparse, as we see in Figure

3.8(b). This inspection supports that MAGIC learns to communicate only when beneficial

to team performance.

3.6.2 Traffic Junction

We evaluate our method in the Traffic Junction domain for the cases of a maximum of

5 agents, 10 agents and 20 agents at a junction. Table 3.2 shows the success rate (i.e.,

no collision in an episode) for each method at convergence in Traffic Junction. Our al-

gorithm achieves near-perfect performance after convergence, widely outperforming all
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Figure 3.9: The average number of epochs for convergence in Traffic Junction with standard
error bars.

benchmarks in its success rate. Figure 3.9 depicts the average number of epochs taken

to converges for each method. Our method maintains quick convergence as the number

of agents increase. However, several of the benchmarks experience a slowdown in their

convergence rate.

Impact of the Message Processor - In Traffic Junction, we allow all agents to communi-

cate to accelerate training for all methods, common in highly vision-limited environments

[22]. As we are using complete graphs (i.e., Scheduler is not used), our SOTA performance

in the Traffic Junction domain displays that the MP considerably contributes to the success

of our algorithm.

3.6.3 Google Research Football

Lastly, we evaluate our algorithm and several state-of-the-art communication-based MARL

baselines in the GRF environment. The results presented provide some insight into each

algorithm’s ability to handle stochasticity, sparse rewards, and a high-complexity state-

action space. We utilize the scoring success rate as our metric of evaluation.
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Figure 3.10: The success rate in GRF as training proceeds.

Table 3.3: The success rate and average steps taken to finish an episode in GRF.

Method Success Rate Steps Taken

MAGIC (Our Approach) 98.2± 1.0% 34.30± 1.34
Ours (without the Scheduler) 91.0± 4.6% 36.31± 2.59
CommNet [23] 59.2± 13.7% 39.32± 2.35
IC3Net [22] 70.0± 9.8% 40.37± 1.22
TarMAC-IC3Net [6] 73.5± 8.3% 41.53± 2.80
GA-Comm [73] 88.8± 3.9% 39.05± 3.05

Impact of the Scheduler - We verify the impact of the Scheduler mechanism in MAGIC

by testing our method without the use of the Scheduler. As seen, the addition of a Scheduler

provides a performance improvement. This result signifies the importance of determining

“when” and “whom” to communicate with.

Figure 3.10 displays the success rate for offending agents to score as the training pro-

ceeds. Our method converges to a higher-performing policy than all the baselines. In our

settings, although each agent only has local observations, it is able to completely observe

the state space. MAGIC without the ability to utilize a scheduler performs poorly. It is

interesting to note that even with unlimited vision, utilizing a complete graph for commu-

nication performs much worse than utilizing a scheduler that gives precise and targeted

communication. Table 3.3 displays the success rate and average steps taken to finish an
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episode at convergence. Our method has a success rate of 98.5%, which is approximately

a 10.5% improvement over the next-best baseline of GA-Comm. Our method achieves the

lowest number of average steps, scoring 13.8% more quickly than the closest benchmark

of GA-Comm. As we have have outperformed all benchmarks within the previous two do-

mains and in the complex GRF environment, we conclude that MAGIC is high-performing,

scales well to the number of agents, robust to stochasticity, and performs well with sparse

rewards.

3.6.4 Communication Efficiency

We present an analysis of the communication efficiency of our method in Table 3.4. Com-

municating efficiently can save resources and allow for messages to be processed more

easily. To gauge the efficiency, we utilize the performance improvement due to commu-

nication and divide the communication graph density. The graph densities are determined

using the sparsity of the adjacency matrix. A fully-connected graph corresponds to a den-

sity of 1, and a graph with no connections corresponds to a density of 0. We perform this

analysis within a Predator-Prey domain of grid size 5x5 with 3 predators, where a perfor-

mance improvement refers to a reduction in steps. To obtain the performance improvement

due to communication, we evaluate a communication-blocked variant of each method and

compare the performance to the method itself. All methods use the same message size and

one-round of communication to maintain a similar network complexity. Utilizing the per-

formance improvement due to communication divided by the graph density as our metric

for communication efficiency, we see that MAGIC is the most efficient. MAGIC commu-

nicates 27.4% more efficiently on average than baselines while also achieving the highest

performance.

Impact of the combined framework of MAGIC - As we compare each method to its non-

communicatory variant, in MAGIC, this results in removing the Scheduler and Message

Processor. MAGIC achieves the greatest improvement compared to baselines, displaying
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Table 3.4: Communication efficiency measured as the performance improvement with
communication divided by graph density.

Method
Graph Avg. Steps Performance Improvement

DensityDensity w/ Comms Improvement

MAGIC (Our Approach) 0.644 8.504 7.562 11.743
CommNet [23] 0.667 9.216 6.455 9.681

IC3Net [22] 0.638 9.208 6.421 10.058
TarMAC-IC3Net[6] 0.856 9.376 5.958 6.956

GA-Comm [73] 0.514 9.334 5.868 11.391

the contribution from the combined effects of the Scheduler and Message Processor.

3.6.5 Discussion

Across multiple test domains, we set a new state-of-the-art in communication-based MARL

performance, outperforming baselines, including [23, 22, 73, 6]. Across our domains, we

achieve an average 5.8% improvement in steps taken (Predator-Prey), average 1.9% im-

provement in success rate (Traffic Junction), 10.5% improvement in success rate (GRF),

and 13.8% improvement in steps taken compared to the closest benchmark across each do-

main. The strong performance improvement we achieve in GRF suggests our approach

is better able to scale to high-dimension state-action spaces while effectively handling

stochasticity and sparse rewards. While our architecture shares some attributes as GA-

Comm [73], GA-Comm has several drawbacks including large epoch training times due

to the complex hard attention structure, a dot-product soft attention mechanism without

scaling, and the inability to extend to multi-round communication. Our approach takes sig-

nificantly less compute by avoiding any recurrent structures in the Scheduler. Specifically,

GA-Comm requires 2x long to train with 3 agents, 3x long with 5 agents, and 4x as long

with 10 agents. Prior work [99] has also shown that additive attention (used in the GAT

layers in our Message Processor) outperforms dot-product attention without scaling when

the message size is large. MAGIC’s Scheduler can explicitly learn and generate different

graphs for different rounds of communication, allowing for higher performance. Addition-
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ally, MAGIC achieves the highest communication efficiency, outperforming benchmarks

by 27.4% on average.

3.7 Physical Robot Demonstration

Figure 3.11: This figure displays a demonstration of our algorithm on physical robots on
the Robotarium platform. The display shows a 3 vs. 2 soccer scenario, with blue agents as
the attackers, and red agents as defenders.

We present a demonstration of our algorithm in a similar 3-vs.-2 soccer scenario on

physical robots in the Robotarium, a remotely accessible swarm robotics research platform

[100]. This demonstration displays the feasibility of trajectories produced by our MARL

algorithm. We present a depiction of MAGIC’s deployed trajectory in Figure 3.11. A video

is attached in this link.

3.8 Conclusion

In this chapter, we propose a novel, end-to-end-trainable, graph-attention communication

protocol, MAGIC, that utilizes a Scheduler to solve the problems of when to communi-

cate and whom to address messages to, and a Message Processor to integrate and process
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messages. We evaluate our method and baselines in several environments, achieving state-

of-the-art performance. In GRF, we achieve a 98.5%, near-perfect success rate, while most

baselines struggle to reach 70%. Not only does MAGIC produce SOTA results, MAGIC

is able to converge 52% faster than the next-quickest baseline, and communicates 27.4%

more efficiently than the average baseline.
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CHAPTER 4

LEARNING SCALABLE AND ADAPTABLE MULTI-AGENT

COMMUNICATION

4.1 Introduction

In chapter 3, we present a communication protocol for MARL that is designed for training

agents to master one task at a time. It can take a long time to train each task from scratch,

even if the new task is not changed a lot from the old one. In the real world, people can

learn new skills extremely quickly because they never learn from scratch. In multi-agent

systems, training on multiple tasks and adapting to new tasks can be challenging, because

the agent might need to adjust their inter-agent coordination or communication strategies

and the change in the number of agents can make this even more difficult. In this chapter,

we first present a multi-agent multi-task reinforcement learning framework, MT-MAGIC,

and then present the method of multi-agent meta-reinforcement learning with RNN-based

black-box adaptation. These methods are both built upon MAGIC introduced in chapter 3,

and they are able to handle tasks with different agent team sizes. Through experiments, we

find that MT-MAGIC can learn efficiently in most tested tasks and generalize well on new

tasks, and Meta-MAGIC can achieve improved multi-task performance and better unseen-

task adaptation compared to MT-MAGIC and the baseline.

We begin this chapter with section 4.2 and introduce the preliminaries for multi-task re-

inforcement learning and RNN-based meta-reinforcement learning. Then, we present our

method in section 4.3. In section 4.4, experiment designs and settings are described. sec-

tion 4.5 shows the results and discussion of the experiments. Lastly, section 4.6 concludes

this chapter.
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4.2 Preliminaries

In this chapter, we follow the framework of POMG augmented with communication defined

in the previous chapter. In this section, multi-agent multi-task reinforcement learning and

black-box adaptation using RNN for single-agent RL will be briefly reviewed.

4.2.1 Multi-Task Reinforcement Learning

The goal of multi-task RL is that an agent needs to optimize its policy θ to solve a sequence

of tasks which can be represented as MDPs. A general learning objective of the single-

agent multi-task RL for M tasks is displayed in Equation 4.1.

JMT(θ) =
M∑

m=1

Es∼pπm,a∼πθ

[ T∑
t=1

γt−1rm(st, at)
]

(4.1)

Here, pπm is the state distribution regarding policy πθ and task m, γ is the discount factor,

and rm(·) is the reward function for task m.

4.2.2 Meta-Reinforcement Learning: Black-Box Adaptation with Recurrent Neural Networks

The aim of meta-RL is learning to reinforcement learn. Specifically, an agent should learn a

new task more quickly or more proficiently, based on its experience on previous tasks. The

general learning objective of meta-RL can be expressed in Equation 4.2 and Equation 4.3.

JMeta(θ) =
M∑

m=1

Es∼pπm,a∼πϕm

[ T∑
t=1

γt−1rm(st, at)
]

(4.2)

ϕm = fθ(Mm) (4.3)

Here,Mm represents the MDP for task m, fθ(·) is an adaption function parameterized by

θ that can be applied to different MDPs, and ϕm is the policy parameter after adaptation to

the MDP for task m. Specifically, depending on the meta-RL method, ϕm can represent the
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hidden state of a RNN within a black-box adaption method, or the entire parameters of the

policy network within a optimization-based method like MAML.

In [78, 48], RNN structures are concurrently proposed to be applied in meta-RL for

adaptation to new tasks. The dynamics of the recurrent network can represent a procedure

of adaptation using the history information from the interaction with a new task. Imple-

menting reinforcement learning and optimizing the network over a trajectory of multiple

episodes internally improves the agent’s policy on a task while negotiating the exploration-

exploitation trade-off. Here, we define the sequential episodes of a task as a meta-episode,

where the first few episodes can be used to explore the environment and provide knowledge

for the later episodes. Given enough training on multiple tasks, learning and adaptation

can occur for each task with the weights of the recurrent network held constant. Specifi-

cally, during training, at the start of each meta-episode, a task from a certain distribution

is sampled, and the hidden state of the RNN policy is reset. At each time step within a

meta-episode, the current state st, previous action at−1, previous reward rt−1, and the flag

of time or environment episode termination for the previous time step dt−1, are input to the

RNN. Between two episodes within a meta-episode, the RNN hidden state is not reset and

preserved for the next episode to provide insights from the previous exploration.

The learning objective maximizes the expected discounted total reward over a meta-

episode instead of an environment episode. The meta-RL problem can be cast as a rein-

forcement learning problem with the objective shown in Equation 4.4.

JMeta(θ) =
M∑

m=1

Es∼pπm,a∼πθ

[ T ′∑
t=1

γt−1rm(s
′t, at)

]
(4.4)

s′
t
= Concat(st, at−1, rt−1, dt−1) (4.5)

Here, T ′ is the total time steps of a meta-episode, s′t is the meta-state concatenating st,

at−1, rt−1, and dt−1, and θ represents the weights of RNN (and other networks if there
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are any). To this end, θ is the parameters of the RL policy, and also the parameters of

the adaptation function of Meta-RL, so it incorporates combined concepts of θ and ϕm in

Equation 4.2.

If the agent can only get access to the environment with partially observable settings,

i.e., the agent interacts with a sequence of POMDPs, the method can be applied without

any changes except replacing the input states to the network with observations.

4.3 Method

4.3.1 Multi-Task MAGIC

Figure 4.1: This figure displays an example of the training scheme of Multi-Task MAGIC.

We follow a similar training scheme to that described in subsection 3.3.4, with a se-

quence of different tasks fed in for agents to interact with. We can revise Equation 3.10 to

the multi-task form displayed in Equation 4.6.

∇θ,ϕLMT(θ, ϕ) =

M∑
m=1

1

tmax

Nm∑
i=1

tmax∑
t=1

[−∇θ log πθ(a
t
i|oti)(Rt

m,i − Vϕ(o
t
i)) + β∇ϕ(R

t
m,i − Vϕ(o

t
i))

2]

(4.6)

Here, Nm is the number of agents in task m, Rt
m,i is the discounted total reward for agent

i in task m, starting from time step t in an episode. Note that for each update cycle we

collect data and update the model from a mini-batch of one task. We provide an example of

training two tasks with 3 agents and 2 agents respectively, in Figure 4.1. The 3-agent task
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has a episode length T1 and the 2-agent task’s episode length is T2. At the start of train-

ing batch one, the hidden states of the three agents {h0
1, h

0
2, h

0
3} will be initialized and fed

into the MAGIC protocol network. At each time step t, the network takes in observations

{ot1, ot2, ot3}, outputs {at1, at2, at3}, and passes the new hidden states {ht+1
1 , ht+1

2 , ht+1
3 } to the

next time step. Here, we ignore the LSTM’s cell states for brevity. When a new episode

starts, the hidden states need to be reset as {h0
1, h

0
2, h

0
3}. When episode two is terminated,

the model will be updated using the trajectories collected by training batch one for the 3-

agent task. Proceeding to training batch two, the hidden states of the two agents {h0
1, h

0
2}

will be initialized and fed into the network. At each time step t, the network takes in ob-

servations {ot1, ot2}, outputs {at1, at2}, and passes the new hidden states {ht+1
1 , ht+1

2 } to the

next time step. As our work follows the framework of POMG augmented with communi-

cation, agents act in a decentralized manner, and share the network structures for encoding

observations and outputting actions. Accordingly, the observations and actions of different

agents are processed in a batch-wise manner, so we do not need to revise the structure of

MAGIC network to adapt to agent number changes as tasks are switched.

4.3.2 Meta-MAGIC

Figure 4.2: This figure displays an example of the training scheme of Meta-MAGIC.

In this subsection, we present Meta-MAGIC, which is a MAGIC-based multi-agent

meta-reinforcement learning method that can generalize on tasks with different team sizes.

The LSTM structure in MAGIC provides a convenient basis for designing a RNN-based
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meta-RL method. We employ MAGIC’s inherent LSTM structure to perform adaptation

to tasks as described in subsection 4.2.2. Therefore, we can cast the multi-agent meta-

RL problem as a common multi-agent multi-task reinforcement learning problem, with the

update rule displayed in Equation 4.7.

∇θ,ϕLMeta(θ, ϕ) =
M∑

m=1

1

t′max

Nm∑
i=1

t′max∑
t=1

[−∇θ log πθ(a
t
i|s′

t
i)(R

t
m,i − Vϕ(s

′t
i)) + β∇ϕ(R

t
m,i − Vϕ(s

′t
i))

2]

(4.7)

s′
t
i = Concat(oti, a

t−1
i , rt−1

i , dt−1
i ) (4.8)

Here, t′max is the number of steps taken within a meta-episode which is also a training

batch. The hidden states of RNN is not reset within the same meta-episode. s′ti represents

the meta-state of agent i at time step t, concatenating the agent specific observation oti,

action at−1
i , reward rt−1

i , and optional extra information dt−1
i (e.g., a flag of time or envi-

ronment episode termination). θ represents the communication-based LSTM policy, and ϕ

represents the corresponding value function parameters.

The training scheme is displayed in Figure 4.2 with an example of a 3-agent (episode

length T1) and 2-agent (episode length T2) task. Similar to Multi-Task MAGIC, at the

start of training batch one, the hidden states of the three agents {h0
1, h

0
2, h

0
3} will be initial-

ized and fed into the MAGIC protocol network. At each time step t, the network takes

in the meta-states {s′t1, s′
t
2, s

′t
3}, outputs {at1, at2, at3}, and passes the new hidden states

{ht+1
1 , ht+1

2 , ht+1
3 } to the next time step. When a new episode starts, the hidden states are

not reset but instead preserved as {hT1
1 , hT1

2 , hT1
3 }. In this way, the exploration information

of each agent from episode one can be delivered to episode two for better decision-makings

to the 3-agent task. When episode two is terminated, the model will be updated using the

trajectories collected by meta-episode one for the 3-agent task. Here, the update does not

only optimize for a better LSTM policy, but also optimize for a better adaption to the task.
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What is more, optimizing over the entire meta-episode with a RNN policy automatically

help agents learn to explore. Proceeding to training batch two, the hidden states from pre-

vious meta-episode are not preserved anymore, and the hidden states of the two agents

{h0
1, h

0
2} are initialized and fed into the network. At each time step t, the network takes

in {s′t1, s′
t
2}, outputs {at1, at2}, and passes the new hidden states {hT2

1 , hT2
2 } to the next time

step.

4.4 Experiment Settings

We test Multi-Task MAGIC and Meta-MAGIC on GRF and Predator-Prey environments.

In this section, we introduce the chosen baseline, objectives and designs, tested scenarios

and state representations, and the training details of our experiments.

4.4.1 Baseline

We choose TarMAC-IC3Net as our baseline for experiments of multi-agent multi-task RL

and meta-RL. GA-Comm is not employed because it does not support training on tasks

with different team sizes. TarMAC-IC3Net has comparable performance to GA-Comm

while requires much less computational time. We follow the steps in subsection 4.3.1

to enable TarMAC-IC3Net to work with multi-task settings, which we refer to as MT-

TarMAC-IC3Net. For brevity, we also refer to Multi-Task MAGIC as MT-MAGIC.

4.4.2 Objectives and Designs

Through the experiments, we would like to answer the following two questions:

1. Can MT-MAGIC learn efficiently in multi-task settings and generalize well on new

tasks?

2. Can Meta-MAGIC provide improved multi-task performance and better unseen-task

adaptation compared to MT-MAGIC and MT-TarMAC-IC3Net?
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Accordingly, we design experiments and evaluate methods in three aspects:

1. Multi-Task Training: First, we train and evaluate the three methods in multi-task

settings. Multi-task training is also the upstream task for meta-learning and transfer

learning (including zero-shot and fine-tuning), so models will be saved from multi-

task training and used for later experiments.

2. Zero-Shot/Few-Shot Testing on new tasks: Here, we test each method’s performance

on new tasks without any model updates using the original models saved from multi-

task training. The goal is to test the zero-shot transferability of MT-MAGIC and

MT-TarMAC-IC3Net, and meta-test few-shot adaptation performance on new tasks

for Meta-MAGIC. Here, k-shot for Meta-MAGIC means that the agents will contin-

uously interact with the same new environment for k episodes. We set k as 10 in our

testing.

3. Fine-Tuning on New Tasks: Here, we will fine-tune the models of MT-MAGIC and

compare the performance of models trained from scratch on new tasks. The goal is

to evaluate the transferability of MT-MAGIC.

4.4.3 Tested Scenarios and State Representations

In GRF, for multi-task training, our tasks include 2 vs. 2, 3 vs. 2, and 3 vs. 3. For zero-

shot/few-shot testing or fine-tuning, the tasks include 3 vs. 2, 3 vs. 3* (multi-task training

on 2 vs. 2 and 3 vs. 3), and 2 vs.3, 4 vs. 3 (multi-task training on 2 vs. 2, 3 vs. 2, and 3

vs. 3). Tasks are different from each other in agent numbers and initialized positions. We

keep other settings the same as the one described in section 3.4. As task changes during

multi-task training, the dimensions of single agent’s observation and action are required to

be constant. We employ zero padding to unify the observation spaces of different tasks in

GRF due to the difference of player numbers. Following section 3.6, we use the average

success rate in an epoch to evaluate methods in GRF.
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In Predator-Prey, for multi-task training, our tasks include 4-agents, 5-agents, 6-agent

cases in 10 × 10 grid, and 8-agent, 10-agent, 12-agent cases in 20 × 20 grid. For zero-

shot/few-shot testing or fine-tuning, the tasks include 3-agent, 8-agent cases in 10 × 10

grid (multi-task training on 4-agent, 5-agent, 6-agent 10× 10 grids), 7-agent, 9-agent, 11-

agent cases in 20 × 20 grid (multi-task training on 8-agents, 10-agent 20 × 20 grids, or

8-agents, 10-agent, 12-agent 20× 20 grids). The settings for all 10× 10-grid tasks follow

the 5-agent 10× 10-grid task in section 3.4. The settings for all 20× 20-grid tasks follow

the 10-agent 20 × 20-grid task in section 3.4. Because the observation is grid-based in

Predator-Prey, changing the number of agents while keeping the grid size fixed will not

affect the dimension of the observation space. Following section 3.6, we use the average

steps taken to finish an episode in an epoch to evaluate methods in Predator-Prey.

4.4.4 Training Details

During the multi-task training phase, the size of training batch/meta-episode is 1000 to sta-

bilize training, compared to the batch size of 500 employed in single-task cases described

in section 3.5. Each epoch includes 5∗M training batch/meta-episode, where M represents

the total number of tasks. In our training, the numbers of tasks are not large, so instead of

randomly sampling tasks from the task set, the agents are set to interact with each task in

turn to enable each task to be experienced uniformly. Therefore, each task is trained on for

five times in each epoch. On top of the multi-task settings, we follow the same training

parameters and settings in section 3.5.

4.5 Results and Discussion

In this section, we present and discuss the results of the experiments in three subsections:

Multi-Task Training, Zero-Shot/Few-Shot Adaptation to Unseen Tasks, and Fine-Tuning.

The results in all GRF tasks are averaged over 4 seeds, and the results in all Predator-Prey

tasks are averaged over 3 seeds.
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4.5.1 Multi-Task Training

Here, we present the results of multi-task training in GRF (Table 4.1) and Predator-Prey

(Table 4.2).

Table 4.1: In this table, we display the results of multi-task training in GRF. We use
the average success rate in an epoch to evaluate methods in GRF. The performance
(mean±standard error) of each task and the average performance are provided.

(a) Task Set: 2 vs. 2, 3 vs. 3

Method 2 vs. 2 3 vs. 3 Avg.

MT-TarMAC-IC3Net 49.01± 0.92% 77.40± 10.30% 63.21± 5.04%

MT-MAGIC 42.94± 2.54% 88.00± 6.67% 65.47± 4.26%

Meta-MAGIC 49.67± 10.30% 92.13± 4.73% 70.90± 3.56%

(b) Task Set: 2 vs. 2, 3 vs. 2, 3 vs. 3

Method 2 vs. 2 3 vs. 2 3 vs. 3 Avg.

MT-TarMAC-IC3Net 55.48± 6.91% 91.45± 3.24% 53.76± 11.40% 66.90± 5.04%

MT-MAGIC 69.78± 7.40% 89.66± 4.14% 68.71± 14.00% 76.05± 5.17%

Meta-MAGIC 63.87± 6.11% 92.50± 1.77% 78.57± 2.69% 78.31± 1.47%

Google Research Football

In GRF, we run separate multi-task training on two sets of tasks, and present the per-

formance of each task and the average performance for each set. Meta-MAGIC leads in

success rate in most cases, and MT-MAGIC can outperform MT-TarMAC-IC3Net in most

tasks. Both Meta-MAGIC and MT-MAGIC achieve over 60% of success rate in all scenar-

ios except 2 vs. 2. We also find that training on more tasks might help improve the average

performance and sometimes help the models escape from sub-optimum.

Predator-Prey

In Predator-Prey, we run experiments on three sets of tasks, with one on the 10 × 10 grid,

and two on the 20 × 20 grid. From the results, we can see that MT-TarMAC-IC3Net has

already successfully learned good policies for agents to find the prey quickly in multi-task
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Table 4.2: In this table, we display the results of multi-task training in Predator-Prey. We
use the average steps taken to finish an episode in an epoch to evaluate methods in Predator-
Prey. The performance (mean±standard error) of each task and the average performance
are provided.

(a) Task Set: 10× 10: 4, 5, 6 agents

Method 4 agents 5 agents 6 agents Avg.

MT-TarMAC-IC3Net 13.80± 0.24 14.04± 0.18 13.25± 0.15 13.70± 0.19

MT-MAGIC 12.67± 0.12 12.94± 0.01 12.30± 0.04 12.64± 0.04

Meta-MAGIC 12.55± 0.03 12.93± 0.04 12.40± 0.09 12.63± 0.06

(b) Task Set: 20× 20: 8, 10 agents

Method 8 agents 10 agents Avg.

MT-TarMAC-IC3Net 33.39± 0.44 34.89± 0.17 34.14± 0.30

MT-MAGIC 32.91± 0.86 34.30± 0.73 33.69± 0.86

Meta-MAGIC 31.77± 0.21 33.63± 0.02 32.70± 0.10

(c) Task Set: 20× 20: 8, 10, 12 agents

Method 8 agents 10 agents 12 agents Avg.

MT-TarMAC-IC3Net 32.49± 0.08 33.42± 0.36 30.06± 0.58 31.99± 0.25

MT-MAGIC 31.99± 0.56 33.16± 0.36 30.38± 0.16 31.84± 0.36

Meta-MAGIC 31.34± 0.24 32.42± 0.28 29.26± 0.40 31.01± 0.29

settings. Meta-MAGIC and MT-MAGIC can still beat MT-TarMAC-IC3Net by a consider-

able margin, and Meta-MAGIC can reach the best performance in most tasks. Comparing

the two sets of tasks in 20 × 20 grid, training on the extra task with 12 agents helps im-

prove the average performance of all tasks and individual performance of the tasks with

8 and 10 agents. This indicates that the designed multi-task training method for multiple

agents efficiently exploits the shared structure of different tasks, and the trained agents can

communicate and make decisions effectively even when the team size changes.

4.5.2 Zero-Shot/Few-Shot Adaptation to Unseen Tasks

Here, we present the results of zero-shot (MT-TarMAC-IC3Net, MT-MAGIC) or few-shot

(Meta-MAGIC) adaptation to unseen tasks. As mentioned in subsection 4.4.2, no method

50



will update the model at this stage. Each method is tested on interactions with the new

environment of 100 batches, with 10 sequential episodes in each batch. Meta-MAGIC’s

hidden states are allowed to be passed between two sequential episodes. The performance

of each method is averaged over these 1000 episodes and presented in Table 4.3 and Ta-

ble 4.4. Each episode’s performance in a batch is also averaged and displayed in Figure 4.3

and Figure 4.4. In all tables and figures, we annotate the unseen task and the corresponding

source tasks from multi-task training.

Table 4.3: In this table, we display the results of zero-shot/few-shot testing in GRF. The
adaptation performance (mean±standard error) on each unseen task is provided.

Method
2 vs. 2, 3 vs. 3 2 vs. 2, 3 vs. 2, 3 vs. 3

3 vs. 2 3 vs. 3* 2 vs. 3 4 vs. 3

MT-TarMAC-IC3Net 70.18± 14.0% 27.25± 11.4% 14.58± 2.92% 18.85± 9.02%

MT-MAGIC 88.10± 5.07% 37.05± 13.1% 34.33± 13.7% 17.50± 7.94%

Meta-MAGIC 89.53± 4.85% 34.43± 16.9% 25.05± 6.38% 23.65± 2.87%

Google Research Football

From the task set of 2 vs. 2 and 3 vs. 3, we test/meta-test each method on 3 vs.2 and

3 vs. 3*, and from the task set of 2 vs. 2, 3 vs.2, and 3 vs. 3, we test/meta-test each

method on 2 vs.3 and 4 vs. 3. Meta-MAGIC leads in 3 vs. 2 and achieves a success rate

close to 90%. However, in all other tasks, direct adaptation without model updates achieve

no more than 40% success rate, and MT-MAGIC beats Meta-MAGIC in 3 vs. 3* and 2

vs. 3. We run experiments on task sets with relatively small sizes, and unlike Predator-

Prey, GRF is more challenging and the agents’ initialized position for each task is fixed,

so even a slightly-revised new task can become out of distribution from the small task set

and lead to failure in zero-shot/few-shot adaptation. On the other hand, from Figure 4.3,

we find that Meta-MAGIC constantly has a performance improvement from episode one to

episode two, while other methods do not. This can indicate that Meta-MAGIC performs

fast adaptation within the first two episodes in the new environment. Furthermore, from the
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(a) 3 vs. 2 from 2 vs. 2, 3 vs. 3 (b) 3 vs. 3* from 2 vs. 2, 3 vs. 3

(c) 2 vs. 3 from 2 vs. 2, 3 vs. 2, 3 vs. 3 (d) 4 vs. 3 from 2 vs. 2, 3 vs. 2, 3 vs. 3

Figure 4.3: This figure displays the zero-shot/few-shot adaptation performance of ten episodes
for unseen tasks within GRF. The performance is averaged over 100 batches. The shaded regions
represent standard errors. Starting higher means the model adapts better within a few steps in the
first episode based on the multi-task training. A positive slope means the model keeps improving
(i.e., adapting) as the agents interact within the simulator. We find MT-MAGIC and Meta-MAGIC
can start higher than MT-TarMAC-IC3Net, and Meta-MAGIC constantly improves, intelligently
adapting within two or three episodes, while other methods do not. Unrolling for longer does not
improve performance. This aligns with the results of another black-box adaptation method for
single-agent meta-RL [49].

following results in Predator-Prey, we find a similar phenomenon regarding Meta-MAGIC,

which indicates the significance of the adaptation process of our method.

Predator-Prey

Table 4.4 shows that Meta-MAGIC outperforms other methods when adapting to most

new scenarios in Predator-Prey, and MT-MAGIC has better zero-shot performance than

MT-TarMAC-IC3Net. From Figure 4.4, we can see that the steps taken achieved by Meta-

MAGIC decrease from episode one to episode two in almost all cases, indicating that Meta-
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(a) 10× 10: 3 agents from 4, 5, 6 agents (b) 10× 10: 8 agents from 4, 5, 6 agents

(c) 20× 20: 7 agents from 8, 10 agents (d) 20× 20: 9 agents from 8, 10 agents

(e) 20×20: 7 agents from 8, 10, 12 agents (f) 20×20: 9 agents from 8, 10, 12 agents

(g) 20×20: 11 agents from 8, 10, 12 agents

Figure 4.4: This figure displays the zero-shot/few-shot adaptation performance of ten episodes in Predator-
Prey unseen tasks. The performance is averaged over 100 batches. The shaded regions represent standard
errors. A lower value for steps taken on the vertical axis is better. Starting lower means the model adapts better
within a few steps in the first episode based on the multi-task training. A negative slope means the model
keeps improving adaptation as the agents interact with more episodes. We see Meta-MAGIC can adapt to
a task within two episodes, and is more likely to keep improving in its adaptation afterwards compared to
other methods. We note that a meta-RL method based on black-box adaptation usually does not improve the
performance monotonically through interactions [49, 48].
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Table 4.4: In this table, we display the results of zero-shot/few-shot testing in Predator-
Prey. The adaptation performance (mean±standard error) on each unseen task is provided.

(a) Source Task Set: 10× 10: 4, 5, 6 agents

Method 3 agents 8 agents

MT-TarMAC-IC3Net 15.10± 0.18 13.57± 0.14

MT-MAGIC 13.86± 0.15 13.01± 0.15

Meta-MAGIC 13.74± 0.04 13.04± 0.07

(b) Source Task Set: 20× 20: 8, 10 agents

Method 7 agents 9 agents

MT-TarMAC-IC3Net 39.19± 0.34 35.99± 0.39

MT-MAGIC 38.25± 1.37 35.41± 1.01

Meta-MAGIC 36.54± 0.42 33.88± 0.09

(c) Source Task Set: 20× 20: 8, 10, 12 agents

Method 7 agents 9 agents 11 agents

MT-TarMAC-IC3Net 37.90± 0.31 34.57± 0.21 34.00± 0.22

MT-MAGIC 38.89± 0.71 34.33± 0.95 33.70± 0.26

Meta-MAGIC 35.98± 0.36 33.15± 0.34 32.47± 0.14

MAGIC can make fast adaptation within one or two episodes. Interestingly, we observe a

similar phenomenon in most curves of MT-MAGIC and MT-TarMAC-IC3Net. Although

MT-MAGIC and MT-TarMAC-IC3Net do not take in reward and action information and do

not preserve hidden states between episodes, to some extent, their RNN structures can still

take advantage of the insights obtained from the history information in the same episode.

This aligns with the results of the single-agent 3D visual navigation environment reported

in [48] and [49]. The agent can do fast adaptation and take fewer steps to reach the goal in a

maze in the second episode after the exploration of the first episode. Then the performance

stops increasing in the following episodes.

In longer-term, Meta-MAGIC keeps a lower bound of all the methods through ten

episodes, and more curves of Meta-MAGIC (Figure 4.4(a), 4.4(b), 4.4(e), 4.4(g)) present

decaying tendency in steps taken than those of MT-MAGIC or MT-TarMAC-IC3Net. What
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is more, Meta-MAGIC achieves lower steps after the first two episodes in all the curves,

while the other two methods do not. This shows that our designed method adapts better to

unseen environments in both short and long terms.

4.5.3 Fine-Tuning

Table 4.5: In this table, we display the results of fine-tuning in GRF and Predator-Prey
unseen tasks. We compare the fine-tuning performance (mean±standard error) of MT-
MAGIC to the training-from-scratch performance of MAGIC on selected tasks. We also
enclose the average epochs taken to achieve the reported performance in the parenthesis.

(a) Fine-Tuning Results in GRF

Method
2 vs. 2, 3 vs. 3 2 vs. 2, 3 vs. 2, 3 vs. 3

3 vs. 2 4 vs. 3

MT-MAGIC Fine-Tuning 97.11± 1.19%(35) 89.01± 2.14% (207)

MAGIC from Scratch 92.52± 4.98% (415) 97.21± 0.82%(429)

(b) Fine-Tuning Results in Predator-Prey, Source Task Set: 10 × 10: 4, 5, 6
agents

Method 3 agents 8 agents

MT-MAGIC Fine-Tuning 13.15± 0.03%(129) 12.70± 0.01%(25)

MAGIC from Scratch 13.41± 0.02% (257) 13.09± 0.15% (294)

(c) Fine-Tuning Results in Predator-Prey, Source Task Set: 20× 20: 8, 10, 12 agents

Method 7 agents 9 agents 11 agents

MT-MAGIC Fine-Tuning 34.38± 0.74%(33) 33.43± 0.47%(16) 32.32± 0.18%(18)

MAGIC from Scratch 35.14± 0.08% (881) 33.99± 0.39% (911) 33.26± 0.50% (917)

Here, we present the fine-tuning results on selected new tasks compared to training

from scratch. We follow the same settings of multi-task training to train a single task

from scratch. The performance of MAGIC from scratch is chosen from the epoch with the

highest success rate or the lowest steps taken during training. Note that we use a larger

batch size but update the model fewer times within an epoch, compared to the experiments

in chapter 3, so it takes more epochs to converge to good performance.

From Table 4.5, we can know that the pre-trained models of MT-MAGIC can be trans-
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ferred well to new environments. MT-MAGIC Fine-Tuning achieves better performance

than training from scratch while taking only 11.28% of its training epochs. The only out-

lier is in 4 vs. 3 of GRF, which is out of the distribution of the task set 2 vs. 2, 3 vs.2,

and 3 vs. 3. The results show that training on multiple tasks by MT-MAGIC improves

the model’s generalization ability, and fine-tuning from this pre-trained model can quickly

reach a better upper bound of the performance in unseen tasks.

4.6 Conclusion and Discussion

In this chapter, we explore a multi-task extension, MT-MAGIC, and a meta-learning exten-

sion to MAGIC, Meta-MAGIC. Both methods can perform multi-task learning across teams

with different numbers of agents, and can also be generalized to unseen tasks of various

sizes. To the best of our knowledge, Meta-MAGIC is the first RNN-based black-box adap-

tation framework for multi-agent meta-RL. We evaluate our methods and a baseline across

two domains, GRF and Predator-Prey. Meta-MAGIC and MT-MAGIC outperform the MT-

TarMAC-IC3Net by a considerable margin in multi-task training and generalize well to

unseen tasks in most cases. Meta-MAGIC can do fast adaptation to new environments and

keeps an upper bound on the performance of all methods in Predator-Prey. Fine-tuning

from pre-trained models by MT-MAGIC can quickly achieve better performance on new

tasks than training from scratch, with only 11.28% of training epochs.

Meanwhile, we would like to note that our methods and the baseline sometimes tend

to be overfitting in GRF, and thus do not generalize well to unseen environments. There

are three main reasons. Firstly, the sizes of our training task sets are relatively small,

which limits the task diversity in GRF. Secondly, within GRF, the initialized positions of

all agents in GRF are fixed, while agents in Predator-Prey are randomly spawned in the

grid at the start of each episode, which provides more sufficient representations of the task

distribution. Thirdly, GRF is more challenging, so a slightly-changed new scenario can be

easily out of distribution of the task set and leads to failure.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, I present related work, methodologies, experiments, and discussions from my

research that push the frontier of reinforcement learning adaptable and scalable multi-agent

communication.

In chapter 3 I propose a novel, fully differentiable communication protocol for MARL,

MAGIC, that utilizes a Scheduler to solve the problems of when to communicate and whom

to address messages to, and a Message Processor based on designed Graph Attention Net-

works to integrate and process messages. We evaluate our method and baselines in several

environments including the unsolved and challenging GRF. Our method achieves state-of-

the-art performance while communicating more efficiently than the baselines.

In chapter 4, I describe a multi-agent multi-task RL training scheme and a multi-agent

meta-RL framework that are based on the communication protocol presented in chapter 3,

named MT-MAGIC and Meta-MAGIC, respectively. Both methods utilize the advantages

of the decentralized execution structure, and thus manage to generalize and adapt to unseen

tasks with different numbers of agents. Meta-MAGIC initiatively explores using the RNN

architecture as the adaptation function in multi-agent meta-RL. Through experiments, we

find that MT-MAGIC enables the agents to learn efficiently in most tested tasks and gener-

alize well on new tasks, and Meta-MAGIC can achieve improved multi-task performance

and better adaptation to new tasks compared to MT-MAGIC and the baseline.
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5.2 Future Work

Communication with noise, limited bandwidth, and delay. In the real world, commu-

nication is usually hindered by noise, limited bandwidth, and delay, and these problems

might be more serious as the number of agents increases. Currently, our communication

protocol proposed in chapter 3 has not considered such conditions. In the future, I seek to

develop a multi-agent communication protocol that accommodates occasionally receiving

noises and sending continuous or binary messages with a limited size. Meanwhile, to con-

sider delays, we seed to define problems within the framework of Delay-Aware Markov

Game proposed in [101].

Decentralized communication I also seek to enable the agents to conduct decentralized

communication that does not require a centralized scheduler (even if light-weighted) to

decide the dynamic communication patterns among agents during execution. The agents

are expected to decide on targeted message receivers on their own from local observations.

In this case, it would be difficult to learn a globally efficient communication strategy. A

potential path to the solution is to use a centralized scheduler only in the training phase,

and train a proxy scheduler for an individual agent to simulate the global scheduler, similar

to the idea of the proxy encoder in [38].

Finding shared structures in multi-agent tasks. The multi-task design introduced in

chapter 4 is mainly focused on accommodating tasks with different team sizes, and a spe-

cialized knowledge sharing mechanism has not been considered. In the future, I would

seek to explore representation learning and task clustering techniques for multi-agent tasks.

What is more, we can also gain insights from hierarchical MARL where multi-agent tasks

can be structured by hierarchically learning a strategic latent variable [102, 39].
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holmsmässan, Stockholm, Sweden, July 10-15, 2018, J. G. Dy and A. Krause, Eds.,
ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 1856–
1865.

[63] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent coopera-
tion,” in Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December
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